
Report Code: AR_573_311220

Length-Based Assessment of the Fisheries Targeting Snappers, Groupers and Emperors in Indonesia, Fishery Management Area 573

YKAN Technical Paper

Peter J. Mous, Wawan B. IGede, Jos S. Pet

DECEMBER 31, 2020

Suggestion citation

Peter J. Mous, Wawan B. I Gede, and Jos S. Pet (2021). Length-based assessment of the fisheries targeting snappers, groupers, and emperors in Indonesia, Fishery Management Area 573. Yayasan Konservasi Alam Nusantara and People and Nature Consulting, Jakarta Indonesia. Report AR 573 311220

Abstract

This document provides an overview of fleet characteristics and catch composition of the demersal fishery targeting snappers in Indonesia Fishery Management Area 573. It also presents trends in length-based stock health indicators of the top-20 species in this FMA. The report presents overfishing risk levels of the top 50 species, both in terms of current status and trend. Finally, the report presents a table with the contribution of other species to the total catch. The findings are based on YKAN's Crew-Operated Data Recording System, an initiative that involves fishers in data collection using digital imagery.

Yayasan Konservasi Alam Nusantara

Ikat Plaza Building - Blok L Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan Kota Denpasar 80221 Bali, Indonesia Ph. +62-361-244524

People and Nature Consulting International

Jalan Tukad Pancoran 15X, Panjer, Denpasar Selatan Kota Denpasar 80225 Bali, Indonesia

TABLE OF CONTENTS

1	Intr	roduction	3
2	Mat	terials and methods for data collection, analysis and reporting	7
	2.1	Frame Survey	7
	2.2	Vessel Tracking and CODRS	7
	2.3	Data Quality Control	8
	2.4	Length-Frequency Distributions, CpUE, and Total Catch	8
	2.5	I-Fish Community	30
3	Fisł	ning grounds and traceability	35
4		gth-based assessments of Top 20 most abundant species in CODRS ples	39
5	Disc	cussion and conclusions	82
6	Ref	erences	89

1 Introduction

This report presents a length-based assessment of the multi-species deep slope fisheries targeting snappers, groupers, and emperors, as well as a number of other families, at depths ranging from 50 to 500 meters, in Fisheries Management Area (WPP) 573 in Southern Indonesia (Figure 1.1). The most important fishing grounds in this area are located in the Indonesian part of the Timor Sea, near the edge of the Australian continental shelf (Figure 1.2). Fishing grounds for snappers, groupers, emperors and other target species in this region include deep slopes along the many islands as well as seamounts and other deep structures which are characteristic for this area. There is also fishing around West Timor, Rote Island and other areas around the Savu Sea, as well as on deep slopes throughout WPP 573, mostly by small-scale fishers. Vessels operating in WPP 573 originate from various ports throughout the country, and may also operate in other WPPs. Kupang is one of the main logistical hubs for the Timor Sea fisheries, whereas most of the processing happens in Bali.

Larger vessels, ranging from 15 to 100 GT, commonly make trips to distant fishing grounds located 1,000 kilometers or more from port. Smaller boats around 5 to 15 GT range up to 150 km from their home base, while the smallest boats of less than 5 GT commonly range 50 km or more. Gear types in these fisheries include drop lines and bottom-set long lines, deployed from boats of less than 5 GT to medium-scale drop line and long line vessels measuring up to 100 GT for the largest long line vessels. The drop line fishery is an active vertical hook-and-line fishery operating at depths from 50 to 500 meters, whereas long lines are set horizontally along the bottom at depths ranging from 50 to 150 meters. Other deep demersal gear types like traps and gillnets are not very common in WPP 573.

The Indonesian deep demersal fisheries catches a large number of species, and stocks of 100 of the most common species are monitored on a continuous basis through a Crew Operated Data Recording System (CODRS). The current report presents the top 50 most abundant species of fish in CODRS samples (Tables 1.1 and 1.2) in WPP 573, and analyses length frequencies of the 50 most important species in the combined deep demersal catches in this fisheries management area. For a complete overview of the species composition with images of all 100 target species, please refer to the ID guide prepared for these fisheries¹. For further background on species life history characteristics, and data-poor length based assessment methods, as applied in this report, please refer to the assessment guide that was separately prepared for these fisheries².

Data in this report represent complete catches by small and medium scale vessels from the above described fleets. The first full year of data collection was in 2015 and this is also the first year for which data are included in this report. All fish captured were photographed on measuring boards by fishing crew participating in our Crew Operated Data Recording System or CODRS. Images were analysed by project staff to generate the species specific length frequency distributions of the catches which served as the input for our length based assessment of this fishery.

 $^{^{1}}$ http://72.14.187.103:8080/ifish/pub/FishID.pdf

²http://72.14.187.103:8080/ifish/pub/IFishAssessmentGuide.pdf

Figure 1.1: Fisheries Management Areas ($Wilayah\ Pengelolaan\ Perikanan\ or\ WPP$) in Indonesian marine waters.

Figure 1.2: Bathymetric map of the WPP 573 including Savu and Timor Sea, in Indonesia. Red lines are EEZ border, black lines are WPP border, blue lines are MPAs.

Table 1.1: Length-weight relationships, trading limits and total sample sizes (including all years) for the 50 most abundant species in CODRS samples from deep water demersal fisheries in 573

			Reported Trade Limit	W =	a L ^b	Length Type for a & b	Converted Trade Limit	Plotted Trade Limit	Sample
Rank	#ID	Species	Weight (g)	\mathbf{a}	b	TL-FL-SL	L(cm)	TL(cm)	Sizes
1	7	Pristipomoides multidens	500	0.020	2.944	FL	31.18	34.92	244757
2	8	Pristipomoides typus	500		2.916	TL	36.16	36.16	165368
3	17	Lutjanus malabaricus	500	0.009	3.137	FL	33.11	33.11	77842
4	45	Epinephelus areolatus	300		3.048	FL	28.18	28.77	54370
5	21	Lutjanus erythropterus	500		2.870	FL	31.79	31.79	19815
6	10	Pristipomoides sieboldii	300		2.942	FL	25.52	29.21	19061
7	9	Pristipomoides filamentosus	500		2.796	FL	29.70	33.27	16967
8	19	Lutjanus timorensis	500		3.137	FL	33.11	33.34	12371
9	96	Parascolopsis eriomma	100		2.990	FL	20.47	21.90	10577
10	18	Lutjanus sebae	500		3.208	FL	29.97	31.26	9026
11	6	Etelis coruscans	500		2.758	FL	30.28	37.85	7086
12	34	Paracaesio kusakarii	500	0.011		FL	30.96	34.80	6925
13	27	Lutjanus vitta	300		2.978	FL	26.72	27.64	6574
14	1	Aphareus rutilans	1000		2.961	FL	42.20	49.61	5471
15	4	Etelis boweni	500		2.950	FL	30.16	32.84	5218
16	5	Etelis radiosus	1000		2.689	FL	38.05	43.15	4956
17	70	Gymnocranius grandoculis	500		2.885	FL	28.43	30.53	4733
18	22	Pinjalo lewisi	300		2.970	FL	28.42	29.64	4107
19	28	Lutjanus boutton	300		3.000	FL	20.75	21.56	4018
20	39	Cephalopholis sonnerati	300		3.058	TL	25.78	25.78	3710
21	43	Epinephelus morrhua	300		2.624	FL	25.59	25.59	3251
22	88	Glaucosoma buergeri	500		2.725	$_{lphaar{ au}}^{ au L}$	30.40	30.40	2906
23	33	Paracaesio xanthura	300		3.000	SL	23.64	27.39	2856
24	46	Epinephelus bleekeri	300	0.009	3.126	TL	28.09	28.09	2336
25	69	Wattsia mossambica	500		2.824	$_{\rm FL}$	28.21	29.34	2270
26	84	Seriola rivoliana	2000		3.170	$_{ m FL}$	54.23	60.03	2251
27	71	Gymnocranius griseus	500		2.885	$_{ m FL}$	28.43	30.56	2215
28	32	Paracaesio gonzalesi	300		3.050	$_{ m FL}$	23.24	24.96	2054
29	20	Lutjanus gibbus	500	0.015	3.091	$_{ m FL}$	28.87	31.09	2044
30	41	Epinephelus latifasciatus	1500	0.010	3.088	$_{ m TL}$	48.00	48.00	1977
31	75	Carangoides chrysophrys	1000		2.902	$_{\mathrm{FL}}$	37.68	42.12	1577
32	52	Epinephelus retouti	300		3.000	SL	22.37	28.24	1406
33	37	Cephalopholis miniata	300		2.864	$_{ m TL}$	26.35	26.35	1397
34	16	Lutjanus bohar	500		3.059	$_{ m FL}$	29.70	31.31	1386
35	15	Lutjanus argentimaculatus	500		2.792	$_{ m FL}$	31.22	31.78	1384
36	63	Lethrinus lentjan	300		2.986	$_{ m FL}$	25.16	26.35	1339
37	35	Paracaesio stonei	500		2.960	FL	28.78	32.35	1152
38	86	Argyrops spinifer	300		2.670	TL	25.11	27.87	1105
39	92	Cookeolus japonicus	300		3.000	TL	27.58	27.58	999
40	85	Erythrocles schlegelii	1500		3.040	$_{ m FL}$	48.55	53.60	914
41	51	Epinephelus chlorostigma	500		2.940	$_{ m FL}$	34.62	34.62	903
42	14	Lutjanus bitaeniatus	500		2.980	$_{ m FL}$	33.61	34.18	889
43	67	Lethrinus amboinensis	300		2.851	$_{ m FL}$	25.49	28.06	889
44	58	Epinephelus amblycephalus	1500		3.057	TL	45.99	45.99	820
45	81	Caranx tille	2000		2.930	$_{ m FL}$	43.43	49.51	800
46	62	Variola albimarginata	300		3.079	$_{ m FL}$	26.68	30.44	786 767
47	26	Lutjanus lemniscatus	300		2.907	$_{ m FL}$	27.28	28.49	767
48	80	Caranx sexfasciatus	2000		2.930	$_{ m FL}$	43.43	49.51	762
49	72	Carangoides coeruleopinnatus	1000		2.902	$_{ m FL}$	35.35	40.12	737
50	90	Diagramma pictum	500	0.014	2.988	FL	33.08	36.71	726

Table 1.2: Sample sizes over the period 2016 to 2024 for the 50 most abundant species in CODRS samples of deepwater demersal fisheries in WPP 573

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
1	Pristipomoides multidens	13230	41176	49279	63282	75510	0	0	0	0	242477
2	Pristipomoides typus	5893	34917		42075		0	0	0	0	163333
3	Lutjanus malabaricus	2685	13653	14148		25694	0	0	0	0	77466
4	Epinephelus areolatus	3717	10287	9738	10464	18566	0	0	0	0	52772
5	Lutjanus erythropterus	1539	5270	5964	2256	4518	0	0	0	0	19547
6	Pristipomoides sieboldii	801	969	2838	2232	11085	0	0	0	0	17925
7	Pristipomoides filamentosus	1873	1386	2977	3585	5701	0	0	0	0	15522
8	Lutjanus timorensis	601	1284	1694	4660	3843	0	0	0	0	12082
9	Parascolopsis eriomma	50	82	1557	1025	7861	0	0	0	0	10575
10	Lutjanus sebae	322	1457	1712	2693	2777	0	0	0	0	8961
11	Etelis coruscans	690	722	2423	1136	1752	0	0	0	0	6723
12	Paracaesio kusakarii	1934	1100	1644	752	982	0	0	0	0	6412
13	Lutjanus vitta	570	892	1129	886	2893	0	0	0	0	6370
14	Aphareus rutilans	701	248	955	1607	1744	0	0	0	0	5255
15	Etelis boweni	918	722	1928	659	678	0	0	0	0	4905
16	Etelis radiosus	59	48	547	2918	1374	0	0	0	0	4946
17	Gymnocranius grandoculis	604	1116	812	593	1253	0	0	0	0	4378
18	Pinjalo lewisi	715	402	577	796	526	0	0	0	0	3016
19	Lutjanus boutton	17	45	323	1606	2003	0	0	0	0	3994
20	Cephalopholis sonnerati	179	521	987	965	993	0	0	0	0	3645
21	Epinephelus morrhua	287	628	938	652	680	0	0	0	0	3185
22	Glaucosoma buergeri	319	790	735	365	557	0	0	0	0	2766
23	Paracaesio xanthura	150	86	496	209	1785	0	0	0	0	2726
24	Epinephelus bleekeri	84	305	517	737	677	0	0	0	0	2320
25	Wattsia mossambica	254	305	581	204	683	0	0	0	0	2027
26	Seriola rivoliana	70	120	502	727	793	0	0	0	0	2212
27	Gymnocranius griseus	136	108	327	401	1189	0	0	0	0	2161
28	Paracaesio gonzalesi	278	526	547	112	570	0	0	0	0	2033
29	Lutjanus gibbus	67	6	115	349	1503	0	0	0	0	2040
30	Epinephelus latifasciatus	87	350	857	358	313	0	0	0	0	1965
31	Carangoides chrysophrys	80	329	437	311	395	0	0	0	0	1552
32	Epinephelus retouti	0	0	419	455	529	0	0	0	0	1403
33	Cephalopholis miniata	7	25	223	375	757	0	0	0	0	1387
34	Lutjanus bohar	77	65	78	384	757	0	0	0	0	1361
35	Lutjanus argentimaculatus	109	318	302	327	289	0	0	0	0	1345
36	Lethrinus lentjan	139	203	189	378	390	0	0	0	0	1299
37	Paracaesio stonei	178	275	259	201	104	0	0	0	0	1017
38	Argyrops spinifer	118	213	208	188	344	0	0	0	0	1071
39	Cookeolus japonicus	117	93	240	152	340	0	0	0	0	942
40	Erythrocles schlegelii	22	97	300	193	282	0	0	0	0	894
41	Epinephelus chlorostigma	219	145	201	82	125	0	0	0	0	772
42	Lutjanus bitaeniatus	144	211	216	149	74	0	0	0	0	794
43	Lethrinus amboinensis	95	68	118	128	315	0	0	0	0	724
44	Epinephelus amblycephalus	49	163	192	157	248	0	0	0	0	809
45	Caranx tille	56	153	36	221	333	0	0	0	0	799
46	Variola albimarginata	20	47	166	213	327	0	0	0	0	773
47	Lutjanus lemniscatus	110	224	175	135	96	0	0	0	0	740
48	Caranx sexfasciatus	66	62	71	168	390	0	0	0	0	757
49	Carangoides coeruleopinnatus	23	119	230	150	215	0	0	0	0	737
50	Diagramma pictum	2	13	7	305	399	0	0	0	0	726

2 Materials and methods for data collection, analysis and reporting

2.1 Frame Survey

A country-wide frame survey was implemented to obtain complete and detailed information on the deep demersal fishing fleet in Indonesia, using a combination of satellite image analysis and ground truthing visits to all locations where either satellite imagery or other forms of information indicated deep demersal fisheries activity. During the frame survey, data were collected on boat size, gear type, port of registration, licenses for specific FMAs, captain contacts and other details, for all fishing boats in the fleet. Following practices by fisheries managers in Indonesia, we distinguished 4 boat size categories including "nano" (<5 GT), "small" (5-< 10 GT), "medium" (10-30 GT), and "large" (>30 GT). We also distinguished 4 gear types used in these fisheries, including vertical drop lines, bottom set long lines, deep water gillnets and traps.

Frame survey data are continuously updated to keep records of the complete and currently active fishing fleet in the deep demersal fisheries. Fleet information is summarized by registration port and home district (Table 2.13), while actual fishing grounds are determined by placing SPOT Trace units on all fishing boats participating in the program. By late 2020, most (over 90%) of the Indonesian coastline had been surveyed and the vast majority of the fleet was on record. The total fleet in each WPP is a dynamic number, as boats are leaving and being added to the local fleet all the time, and therefore the fleet survey data are updated continuously.

2.2 Vessel Tracking and CODRS

Vessel movement and fishing activity as recorded with SPOT data generates the information on fleet dynamics. When in motion, SPOT Trace units automatically report an hourly location of each fishing boat in the program, and when at rest for more than 24 hours, they relay daily status reports. Data on species and size distributions of catches, as needed for accurate length based stock assessments, are collected via Crew Operated Data Recording Systems or CODRS. This catch data is georeferenced as the CODRS works in tandem with the SPOT Trace vessel tracking system. Captains were recruited for the CODRS program from across the full range of boat size and gear type categories.

The CODRS approach involves fishers taking photographs of the fish in the catch, displayed on measuring boards, while the SPOT tracking system records the positions. Data recording for each CODRS fishing trip begins when the boat leaves port with the GPS recording the vessel tracks while it is steaming out. After reaching the fishing grounds, fishing will start, changing the track of recorded positions into a pattern that shows fishing instead of steaming. During the fishing activity, fish is collected on the deck or in chiller boxes on deck. The captain or crew will then take pictures of the fish, positioned over measuring boards (Figure 2.1), before moving the fish from the deck or from the chiller to the hold (to be stored on ice) or to the freezer. The process is slightly different on some of the "nano" boats (around 1 GT), where some crew take pictures upon landing instead of at sea. In these situations, the timestamps of the photographs are still used as an indication of the fishing day, even though most fishing may have happened on the day before.

At the end of the trip, the storage chip from the camera is handed over for processing of the images by expert staff. Processing includes ID of the species and measurement of the length of the fish (Figure 2.2), double checking by a second expert, and data storage in the IFish data base. Sets of images from fishing trips with unacceptable low quality photographs are not further processed and not included in the dataset. Body weight at length is calculated for all species using length-weight relationships to enable estimation of total catch weights as well as catch weights per species for individual fishing trips by CODRS vessels. Weight converted catch length frequencies of individual catches is verified against sales records of landings. These sales receipts or ledgers represent a fairly reliable estimate of the total weight of an individual catch (from a single trip, and including all species) that is independent from CODRS data.

2.3 Data Quality Control

With information from sales records we verify that individual catches are fully represented by CODRS images and we flag catches when they are incomplete, judging from comparison with the weight converted catch size frequencies. When estimated weights from CODRS are above 90% of landed weights from receipts, they are considered complete and accepted for use in length-based analysis and calculations of CpUE. CpUE is calculated on a day by day basis, in kg/GT/day, using only those days from the trip when images were actually collected. Medium size and larger vessels (10 GT and larger) do trips of at least a week up to over a month. There may be some days on which weather or other conditions are such that no images are collected, but sufficient days with images, within those trips usually remain for daily CpUE estimates and to supply samples for length-based analysis. For boats of 10 GT and above, incomplete data sets with 30% to 90% coverage are still used for analysis, using only those days on which images were collected. For boats below 10 GT (doing day trips or trips of just a few days) only complete data sets are used for CpUE calculations. All data sets on catches with less than 30% coverage are rejected and are not used in any analysis.

2.4 Length-Frequency Distributions, CpUE, and Total Catch

By the end of 2020, more than 400 boats participated in the CODRS program (Figure 2.3) across all fishing grounds in Indonesia, with close to 40 boats enrolled in each WPP (Table 2.1). Recruitment of captains from the overall fleet into the CODRS program is not exactly proportional to composition of the fleet in terms of vessel size, gear type and the FMA where the boat normally operates. Actual fleet composition by boat size and gear type, and activity in terms of numbers of active fishing days per year for each category, are therefore used when CODRS data are used for CpUE and catch calculations. Species composition in the catch is also not exactly the same as species composition in the CODRS samples. Catch information by WPP and by fleet segment from CODRS samples is combined with fleet composition and activity information to obtain accurate annual catch information and species composition for each segment of the fleet.

Converted weights from catch size frequencies on individual fishing days, in combination with activity data from onboard trackers are used to estimate catch per unit of effort (CpUE) by fleet segment (boat size * gear type), by FMA, by species, and over time. Plotted data show clear differences between CpUE values for different gear types and different boat size categories (Figure 2.4) and we therefore work with separated gear

types and boat size categories to generate CpUE values for each distinct segment of the fleet (Table 2.2 and Table 2.3). Activity data from onboard trackers on more than 400 fishing boats are used to estimate the number of active fishing days per year for each segment of the fleet (Table 2.4) and the total (hull) Gross Tonnage in each fleet segment is combined with fleet activity to establish a measure of effort. With this information, CpUE is precisely defined in kg per GT per active fishing day for each type of gear and each category of boat size in each FMA. Annual averages of CpUE by fleet segment are plotted for the top 7 species in each FMA (Figures 2.5 through 2.11), as indicators for stock health, and to compare with indicators from length-based analysis (i.e. Spawning Potential Ratio and percentage of immature fish in the catch).

Information on fleet activity, fleet size by gear type and boat size, and average size frequencies by species (per unit of effort) is used to estimate total catch. Fishing effort in terms of the average number of active fishing days per year for each gear type and boat size category (Table 2.4), is derived from SPOT data looking at movement patterns. Fleet size by gear type and boat size category (Table 2.5) is obtained from field surveys, where each vessel is recorded in a data base with estimated GT. Average size frequency distributions by fleet segment and species for each FMA, in combination with the information on effort by fleet segment, are thus used to estimate CATCH LFD (over the entire fleet) from average CODRS LFD by fleet segment. Only annual sample sizes larger than 200 fish per species and 50 fish per fleet segment are used for further calculations. Numbers per size class for each species in the catch are multiplied with weights per size class from lengthweight relationships, to calculate catches by fleet segment (Table 2.7), species distribution in the total catch (Table 2.8), and catch by species for each gear type separately (Tables 2.9 through 2.12).

As the CODRS program is still in final stage of development, some parts for the fleet ("fleet segments", a combination of WPP, gear type, and boat size category) are not yet represented. For those missing fleet segments, we apply the following approach to estimate annual catch. First, within each WPP, we estimate the total catch and the total effort for all fleet segments where we have representation by CODRS. We express annual effort as "tonnage-days", i.e. the GT of each vessel times the annual number of fishing days. Then, we calculate the average catch-per-unit-effort, over all fleet segments that have CODRS representation within each WPP (in metric tons per tonnage-day). This results in one catch-per-unit-effort estimate for each WPP (CPUE-estimate-per-WPP). Then, we calculate the effort, in tonnage-days, for the fleet segments where we do not have CODRS representation, and we multiply this effort with CPUE-estimate-per-WPP to get the estimated total annual catch for that fleet segment. This means that, within each WPP, fleet segments that do not have CODRS representation all have the same CPUE estimate-per-WPP, but their total catch estimates vary because effort between those fleet segments vary.

Trends in CpUE by species and by fleet segment (Figures 2.5 through 2.11) can be used as indicator for year-on-year changes in status of the stocks, for as far as time series are available within each fleet segment. Note, however, that these time series sometimes are incomplete or interrupted. This is due to variations in the presence of fleet segments between years in each WPP, and sometimes the CODRS vessels representing a fleet segment may disappear from one WPP and show up in another WPP. This may happen due to problems with processing permits at local authorities, but also due to the emerging differences in efficiencies between gear types and boat size categories, as well as due to perceptions on opportunities in other WPPs.

Figure 2.1: Fishing crew preparing fish on a measuring board.

Figure 2.2: Fish photographed by fishing crew on board as part of CODRS.

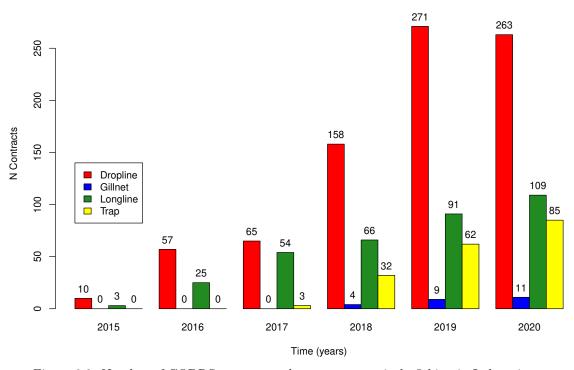


Figure 2.3: Number of CODRS contractors by gear type actively fishing in Indonesian waters.

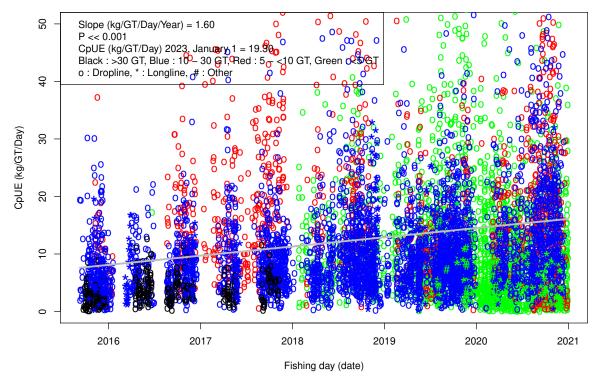


Figure 2.4: Catch per Unit of Effort in WPP 573.

Table 2.1: Number of CODRS deployed by gear type and boat size category in WPP 573

N	Dropline	Longline	Gillnet	Trap	Total
Nano	13	2	NA	NA	15
Small	7	NA	NA	NA	7
Medium	12	2	NA	NA	14
Large	NA	NA	NA	NA	0
NA	32	4	0	0	36

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.2: CpUE by fishing gear and boat size category in WPP 573 in 2020

kg/GT/Day	Dropline	Longline	Gillnet	Trap
Nano	14.09	5.27	16.11	NA
Small	24.26	16.11	16.11	NA
Medium	20.04	14.39	16.11	NA
Large	NA	NA	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.3: Number of CODRS observations that contribute to CpUE value in WPP 573 in 2020

N	Dropline	Longline	Gillnet	Trap
Nano	1259	68	2515	NA
Small	429	2515	2515	NA
Medium	714	34	2515	NA
Large	NA	NA	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.4: Average active-fishing days per year by fishing gear and boat size category in all WPP

Days / Year	Dropline	Longline	Gillnet	Trap
Nano Dedicated	201	235	224	194
Nano Seasonal	100	118	112	97
Small Dedicated	213	258	247	277
Small Seasonal	107	129	124	139
Medium Dedicated	204	213	258	219
Medium Seasonal	102	107	129	110
Large Dedicated	166	237	151	185
Large Seasonal	83	119	75	92

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.5: Current number of boats in the fleet by fishing gear and boat size category in WPP 573

Number of Boat	Dropline	Longline	Gillnet	Trap	Total
Nano Dedicated	429	214	0	0	643
Nano Seasonal	872	354	2	0	1228
Small Dedicated	22	3	2	0	27
Small Seasonal	313	1	6	0	320
Medium Dedicated	34	20	1	0	55
Medium Seasonal	1	0	0	0	1
Large Dedicated	0	0	0	0	0
Large Seasonal	0	0	0	0	0
Total	1671	592	11	0	2274

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.6: Current total gross ton nage of all boats in the fleet by fishing gear and boat size category in WPP $573\,$

Total GT	Dropline	Longline	Gillnet	Trap	Total
Nano Dedicated	902	211	0	0	1112
Nano Seasonal	2142	634	9	0	2785
Small Dedicated	172	22	14	0	208
Small Seasonal	1641	6	36	0	1683
Medium Dedicated	637	279	29	0	945
Medium Seasonal	15	0	0	0	15
Large Dedicated	0	0	0	0	0
Large Seasonal	0	0	0	0	0
Total	5508	1152	88	0	6748

Table 2.7: Total catch in metric tons per year by fishing gear and boat size category in WPP 573 in 2020

Total Catch	Dropline	Longline	Gillnet	Trap	Total
Nano Dedicated	2554	261	0	0	2815
Nano Seasonal	3018	394	17	0	3429
Small Dedicated	888	92	56	0	1036
Small Seasonal	4260	13	72	0	4344
Medium Dedicated	2604	856	121	0	3581
Medium Seasonal	31	0	0	0	31
Large Dedicated	0	0	0	0	0
Large Seasonal	0	0	0	0	0
Total	13356	1616	265	0	15236

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.8: Top 20 species by volume in deepwater demersal fisheries with % immature fish in the catch in WPP 573 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
Species	MT	weight %		% Number		
			% Weight		% Weight	Immature
Pristipomoides multidens	4108	27	27	52	28	$_{ m High}$
Lutjanus malabaricus	1780	12	39	26	12	Med
Pristipomoides typus	1333	9	47	51	29	High
Pristipomoides sieboldii	884	6	53	7	3	Low
Aphareus rutilans	730	5	58	54	22	High
Pristipomoides filamentosus	610	4	62	79	50	High
Seriola rivoliana	522	3	65	18	3	Med
Etelis radiosus	392	3	68	72	39	High
Epinephelus areolatus	366	2	70	0	0	Low
Etelis coruscans	329	2	73	85	49	High
Lutjanus bohar	270	2	74	26	5	Med
Lutjanus sebae	219	1	76	52	27	High
Lutjanus erythropterus	219	1	77	0	0	Low
Paracaesio xanthura	214	1	79	1	0	Low
Caranx ignobilis	201	1	80	19	5	Med
Paracaesio kusakarii	197	1	81	39	16	High
Etelis boweni	182	1	82	66	35	High
Caranx sexfasciatus	176	1	84	12	1	Med
Caranx tille	164	1	85	2	1	Low
Diagramma pictum	152	1	86	1	0	Low
Total Top 20 Species	13047	86	86	37	21	High
Total Top 100 Species	15236	100	100	30	19	Medium

Table 2.9: Top 20 species by volume in Dropline fisheries with % immature fish in the catch in WPP 573 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Pristipomoides multidens	3479	26	26	55	30	High
Lutjanus malabaricus	1465	11	37	28	14	Med
Pristipomoides typus	1264	9	46	52	29	High
Pristipomoides sieboldii	862	6	53	7	3	Low
Aphareus rutilans	704	5	58	54	22	High
Pristipomoides filamentosus	585	4	63	79	50	High
Seriola rivoliana	481	4	66	18	3	Med
Etelis radiosus	377	3	69	72	39	High
Epinephelus areolatus	345	3	72	0	0	Low
Etelis coruscans	321	2	74	85	49	High
Lutjanus erythropterus	214	2	76	0	0	Low
Lutjanus bohar	207	2	77	26	5	Med
Paracaesio xanthura	206	2	79	1	0	Low
Lutjanus sebae	197	1	80	52	27	High
Paracaesio kusakarii	192	1	82	39	16	High
Etelis boweni	177	1	83	66	35	High
Caranx ignobilis	150	1	84	19	5	Med
Parascolopsis eriomma	138	1	85	0	0	Low
Lutjanus gibbus	130	1	86	10	4	Med
Caranx sexfasciatus	123	1	87	12	1	Med
Total Top 20 Species	11617	87	87	34	22	High
Total Top 100 Species	13356	100	100	30	20	High

Table 2.10: Top 20 species by volume in Longline fisheries with % immature fish in the catch in WPP 573 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	Immature
Pristipomoides multidens	558	35	35	22	9	Med
Lutjanus malabaricus	284	18	52	11	4	Med
Caranx tille	91	6	58	0	0	Low
Lutjanus argentimaculatus	63	4	62	NA	NA	
Diagramma pictum	59	4	65	NA	NA	
Lutjanus bohar	58	4	69	NA	NA	
Caranx sexfasciatus	50	3	72	NA	NA	
Caranx ignobilis	48	3	75	NA	NA	
Pristipomoides typus	46	3	78	8	3	Low
Lethrinus olivaceus	44	3	80	NA	NA	
Epinephelus coioides	41	3	83	NA	NA	
Seriola rivoliana	32	2	85	NA	NA	
Lethrinus nebulosus	21	1	86	NA	NA	
Lutjanus sebae	18	1	87	NA	NA	
Epinephelus malabaricus	18	1	89	NA	NA	
Epinephelus areolatus	14	1	89	0	0	Low
Pristipomoides filamentosus	14	1	90	NA	NA	
Aphareus rutilans	13	1	91	NA	NA	
Lutjanus gibbus	13	1	92	NA	NA	
Lutjanus timorensis	11	1	93	NA	NA	
Total Top 20 Species	1496	93	93	15	6	Medium
Total Top 100 Species	1616	100	100	15	6	Medium

Table 2.11: Top 20 species by volume in Gillnet fisheries with % immature fish in the catch in WPP 573 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	MT	%	% Weight	% Number	% Weight	${\bf Immature}$
Pristipomoides multidens	71	27	27	NA	NA	
Lutjanus malabaricus	31	12	39	NA	NA	
Pristipomoides typus	23	9	47	NA	NA	
Pristipomoides sieboldii	15	6	53	NA	NA	
Aphareus rutilans	13	5	58	NA	NA	
Pristipomoides filamentosus	11	4	62	NA	NA	
Seriola rivoliana	9	3	65	NA	NA	
Etelis radiosus	7	3	68	NA	NA	
Epinephelus areolatus	6	2	70	NA	NA	
Etelis coruscans	6	2	73	NA	NA	
Lutjanus bohar	5	2	74	NA	NA	
Lutjanus sebae	4	1	76	NA	NA	
Lutjanus erythropterus	4	1	77	NA	NA	
Paracaesio xanthura	4	1	79	NA	NA	
Caranx ignobilis	3	1	80	NA	NA	
Paracaesio kusakarii	3	1	81	NA	NA	
Etelis boweni	3	1	82	NA	NA	
Caranx sexfasciatus	3	1	84	NA	NA	
Caranx tille	3	1	85	NA	NA	
Diagramma pictum	3	1	86	NA	NA	
Total Top 20 Species	227	86	86	NA	NA	NA
Total Top 100 Species	265	100	100	NA	NA	NA

Table 2.12: Top 20 species by volume in Trap fisheries with % immature fish in the catch in WPP 573 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
Брестов	MT	%	% Weight	% Number		Immature
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
Total Top 20 Species	0	0	0	NA	NA	NA
Total Top 100 Species	0	0	0	NA	NA	NA



Figure 2.5: Catch per Unit of Effort per calendar year for Pristipomoides multidens in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.



Figure 2.6: Catch per Unit of Effort per calendar year for Lutjanus malabaricus in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

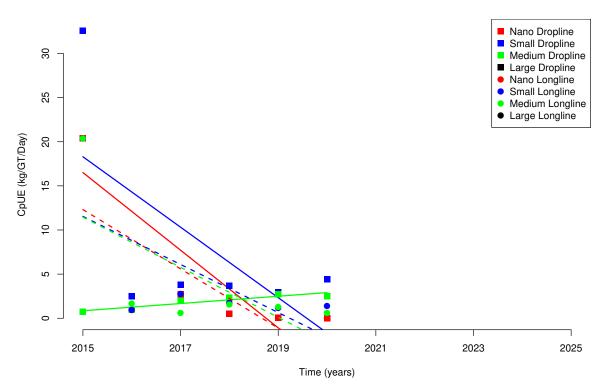


Figure 2.7: Catch per Unit of Effort per calendar year for Pristipomoides typus in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Figure 2.8: Catch per Unit of Effort per calendar year for Pristipomoides sieboldii in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

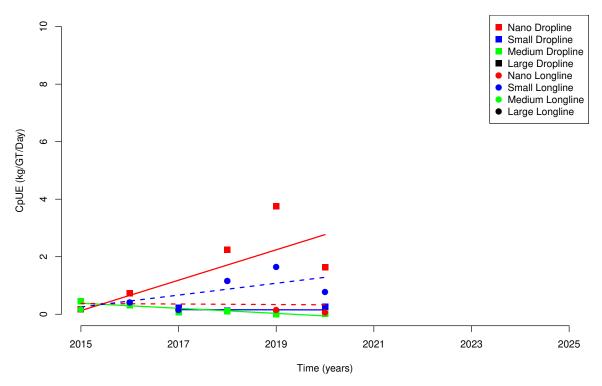


Figure 2.9: Catch per Unit of Effort per calendar year for Aphareus rutilans in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

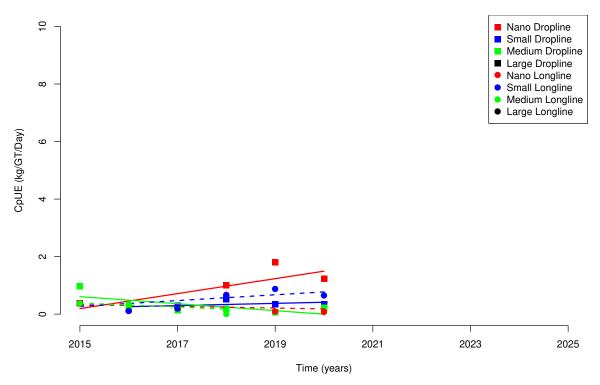


Figure 2.10: Catch per Unit of Effort per calendar year for Pristipomoides filamentosus in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

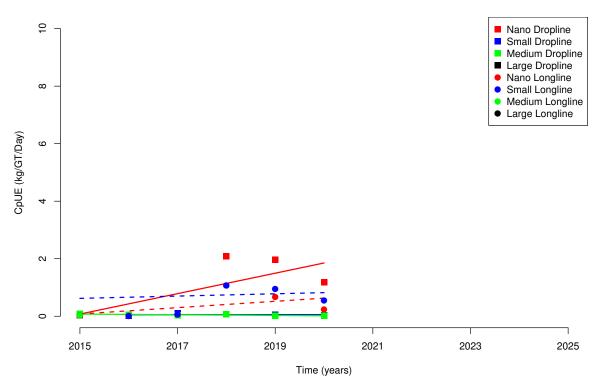


Figure 2.11: Catch per Unit of Effort per calendar year for Seriola rivoliana in WPP 573 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total G7
1	571	Desa Sungai Kuruk III	Aceh Tamiang	Nano	Trap	2	6
2	571	Desa Sungai Kuruk III	Aceh Tamiang	Small	Trap	6	34
3	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Dropline	1	2
	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Trap	5	10
•	571	Desa Belawan Lama	Kota Medan	Small	Trap	10	50
5	571	Desa Beurawang	Kota Sabang	Nano	Dropline	1	4
	571	PP. Pasiran	Kota Sabang	Nano	Dropline	2	3
3	571	PP. Pasiran	Kota Sabang	Small	Dropline	1	8
)	571	Desa Sei Bilah	Langkat	Medium	Trap	2	22
10	571	Desa Sei Bilah	Langkat	Nano	Dropline	1	4
11	571	Desa Sei Bilah	Langkat	Small	Dropline	2	18
.2	571	Desa Sei Bilah	Langkat	Small	Trap	2	16
.3	571	Desa Ujung Kampung	Langkat	Medium	Trap	1	12
4	571	Desa Ujung Kampung	Langkat	Nano	Trap	6	27
15	571	Desa Ujung Kampung	Langkat	Small	Trap	3	20
16	571	Pangkalan Susu	Langkat	Nano	Trap	38	114
7	571	Pelabuhan Ujung Kampung	Langkat	Medium	Trap	1	13
18	571	PPI. Pangkalan Brandan	Langkat	Nano	Trap	32	131
19	571	PPI. Pangkalan Brandan	Langkat	Small	Trap	2	14
20	571	PP. Ujung Blang	Lhokseumawe	Nano	Longline	7	11
21	571	Desa Sialang Buah	Serdang Bedagai	Medium	Longline	1	13
22	571	Desa Sialang Buah	Serdang Bedagai	Nano	Longline	2	7
23	571	Desa Sialang Buah	Serdang Bedagai	Small	Longline	3	22
24	571	Sialang Buah	Serdang Bedagai	Nano	Longline	11	44
25	571	Sialang Buah	Serdang Bedagai	Small	Longline	4	30
26	571	Teluk Mengkudu	Serdang Bedagai	Small	Longline	5	48
27	572	Kuala Bubon	Aceh Barat	Medium	Trap	2	21
28	572	Kuala Bubon	Aceh Barat	Small	Trap	2	14
29	572	PP. Ujoeng Baroh	Aceh Barat	Nano	Longline	1	4
30	572	PP. Ujoeng Baroh	Aceh Barat	Small	Dropline	1	6
31	572	PP. Ujoeng Baroh	Aceh Barat	Small	Longline	1	5
32	572	PP. Ujong Baroeh	Aceh Barat	Nano	Dropline	8	28
33	572	PP. Ujong Baroeh	Aceh Barat	Nano	Longline	3	12
34	572	PP. Ujong Baroeh	Aceh Barat	Small	Dropline	14	84
35	572	PP. Ujong Baroeh	Aceh Barat	Small	Longline	3	21
36	572	PP. Ujong Baroeh	Aceh Barat	Small	Trap	2	10
37	572	Susoh	Aceh Barat Daya	Medium	Dropline	1	11
38	572	Susoh	Aceh Barat Daya	Small	Dropline	2	12
39	572	Desa Lampuyang	Aceh Besar	Nano	Dropline	15	22
40	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Dropline	5	6
41	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Longline	8	26
12	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Dropline	2	12
43	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Longline	27	165
14	572	PP. Meukek	Aceh Selatan	Nano	Longline	1	3
1 5	572	Desa Pulau Balai	Aceh Singkil	Medium	Gillnet	1	10
16	572	Desa Pulau Balai	Aceh Singkil	Nano	Trap	6	29
17	572	PP. Lampulo	Banda Aceh	Nano	Dropline	1	4
18	572	PP. Lampulo	Banda Aceh	Nano	Longline	2	6
19	572	PP. Lampulo	Banda Aceh	Small	Dropline	8	49
50	572	PP. Lampulo	Banda Aceh	Small	Longline	1	6
51	572	PPS Lampulo	Banda Aceh	Small	Dropline	9	63
52	572	PP. Sikakap	Kepulauan Mentawai	Nano	Dropline	1	3
53	572	PP. Tuapejat	Kepulauan Mentawai	Medium	Dropline	$\overline{2}$	24
54	572	PP. Tuapejat	Kepulauan Mentawai	Small	Dropline	$\overline{2}$	18
55	572	PP. Pulau Baai	Kota Bengkulu	Large	Trap	1	31
	572	PP. Pulau Baai	Kota Bengkulu Kota Bengkulu	Medium	Dropline	8	107
าท	014	II. I uluu Daal	Troug Dongrand				101
56 57	572	PP. Pulau Baai	Kota Bengkulu	Medium	Gillnet	7	153

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

572 P.P. Pulau Baai Kota Bengkulu Small Dropline 12 70	Row	WPP	Registration Port	Home District	Boat Size		N	Total GT
61 572 Desa Taluak Kota Sabang Nano Dropline 2 3 62 572 PP. Sibologa Kota Sibolga Medium Trap 6 87 64 572 PP. Sibologa Kota Sibolga Nano Dropline 4 14 65 572 PP. Sibolga Kota Sibolga Small Dropline 3 18 66 572 PP. Sibolga Kota Sibolga Small Dropline 3 18 68 572 PP. Sibolga Kota Sibolga Small Dropline 6 9 572 PP. Muara Piluk Bakauheni Lampung Nano Longline 1 5 68 572 PP. Muara Piluk Bakauheni Lampung Small Dropline 2 1 1 5 70 572 DP. Buara Piluk Bakauheni Mukomuko Small Dropline 2 1 1 5 1 8 1 2 1 1 1								
62 572 Desa Keuneukai Kota Sabung Nano Dropline 2 3 86 4 572 PP. Sibolga Kota Sibolga Nano Dropline 4 14 64 572 PP. Sibolga Kota Sibolga Nano Dropline 4 14 14 65 572 PP. Sibolga Kota Sibolga Small Trap 1 4 14 66 572 PP. Sibolga Kota Sibolga Small Trap 9 55 68 572 PP. Muara Piluk Bakauheni Lompung Nano Longline 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				_				
63 372 P.P. Sibolça Kota Sibolça Medium Trap 6 872 64 572 P.P. Sibolça Kota Sibolça Nano Tropline 2 47 65 572 P.P. Sibolça Kota Sibolça Small Dropline 3 18 67 572 P.P. Sibolça Kota Sibolça Small Dropline 1 5 68 572 P.P. Muara Piluk Bakauheni Lampung Nano Longline 1 5 70 572 P.P. Abrara Piluk Bakauheni Lampung Small Longline 2 100 100 1 5 70 572 P.P. Abrara Piluk Bakauheni Muscar Paluk Mano Longline 2 1 5 1 8 6 1 5 1 8 6 1 6 7 2 P.P. Buara Mac 1 1 1 1 1 1 1 1 1 1 1						_		
64 572 PP. Sibologa Kota Sibologa Nano Dropline 4 14 66 572 PP. Sibolga Kota Sibolga Small Dropline 3 18 67 572 PP. Sibolga Kota Sibolga Small Dropline 3 18 68 572 PP. Muara Piluk Bakauheni Lampung Small Longline 1 5 70 572 PP. Marar Paluk Bakauheni Lampung Small Dropline 5 10 0 10 0 10 0 10 0 10 0 10 0 10 0 0 10 0 0 10 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10								
65 572 PP. Sibologa Kota Sibologa Nano Trap 12 47 66 572 PP. Sibolga Kota Sibolga Small Dropline 9 55 67 572 PP. Sibolga Kota Sibolga Small Trap 9 55 68 572 PP. Muara Piluk Bakauheni Lampung Nano Longline 1 5 70 572 PP. Baras Bantal Mukomuko Small Dropline 20 100 71 572 Kec. Teluk Dalam Nias Utara Small Dropline 25 18 73 572 Desa Helera Nias Utara Nano Longline 2 11 75 572 Muara Padang Padang Small Longline 2 11 75 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Desa Helera Nias Utara Small Longline 1			9					
66 5722 PP. Sibologa Kota Sibolga Small Dropline 3 1.8 68 572 PP. Miara Piluk Bakauheni Lampung Nano Longline 1 3 69 572 PP. Maara Piluk Bakauheni Lampung Small Dropline 20 100 70 572 PP. Pasar Bantal Mukomuko Small Dropline 5 18 70 572 Desa Batolakha Nias Utara Small Dropline 5 18 71 572 Desa Helera Nias Utara Small Longline 13 21 74 572 Desa Helera Nias Utara Small Longline 1 11 74 572 Desa Helera Nias Utara Small Longline 1 11 75 572 Desa Helera Nias Utara Small Longline 4 21 76 572 DP. Bunga Padang Small Dropline 4<						_		
67 572 PP. Shologa Kota Sibolga Small Trap 9 55 68 572 PP. Muara Piluk Bakauheni Lampung Nano Longline 1 5 70 572 PP. Muara Piluk Bakauheni Lampung Small Longline 1 5 71 572 Kec. Teluk Dalam Nias Utara Small Dropline 25 18 72 572 Desa Belotolakha Nias Utara Small Dropline 25 197 73 572 Desa Helera Nias Utara Small Longline 2 11 74 572 Muara Padang Padang Medium Longline 2 11 76 572 Muara Padang Padang Small Dropline 4 21 77 572 Muara Padang Padang Medium Dropline 4 21 78 572 DP. Muaro Padang Medium Longline 5								
68 572 PP. Muara Piluk Bakauheni Lampung Nano Longline 16 43 69 572 PP. Muara Piluk Bakauheni Lampung Small Longline 1 5 70 572 PP. Pasar Bantal Mukomuko Small Dropline 20 100 71 572 Desa Belotakha Nias Utara Nano Longline 25 197 73 572 Desa Helera Nias Utara Nano Longline 2 11 74 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Muara Padang Padang Medium Longline 2 11 76 572 Muara Padang Padang Small Longline 1 11 78 572 P.P. Bungus Padang Medium Longline 5 61 80 572 P.P. Muaro Padang Small Dropline 1				9		_		
69 572 PP. Muara Piluk Bakauheni Lampung Small Longline 1 5 70 572 PP. Pasar Bantal Mukomuko Small Dropline 20 100 71 572 Kec. Teluk Dalam Nias Utara Small Dropline 25 197 73 572 Desa Belera Nias Utara Small Longline 2 11 74 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Muara Padang Padang Small Longline 2 11 76 572 Muara Padang Padang Small Longline 4 21 77 572 PP. Bugus Padang Medium Dropline 4 52 85 572 PP. Muaro Padang Medium Longline 5 61 85 572 PP. Muaro Padang Small Dropline 1 5 81 572 PP. Muaro Padang Small Longline 1 7				9				
70 5722 PP. Pasar Bantal Mukomuko Small Dropline 5 18 71 572 Desa Botolakha Nias Utara Small Dropline 25 197 73 572 Desa Helera Nias Utara Small Longline 21 11 74 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Muara Padang Padang Small Longline 2 11 76 572 Muara Padang Padang Small Longline 1 8 78 572 PP. Bungus Padang Medium Longline 5 61 80 572 PP. Muaro Padang Medium Longline 5 61 80 572 PP. Muaro Padang Small Dropline 5 61 81 572 PP. Muaro Padang Small Dropline 1 5								
71 5722 Kec. Teluk Dalam Nias Clara Nano Dropline 5 18 72 572 Desa Botolakha Nias Utara Small Dropline 25 197 73 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Desa Helera Nias Utara Small Longline 1 11 76 572 Muara Padang Padang Medium Longline 1 21 77 572 PP. Bungus Padang Medium Dropline 4 21 78 572 PP. Muaro Padang Medium Dropline 4 52 87 572 PP. Muaro Padang Small Dropline 1 5 81 572 PP. Mauro Padang Small Dropline 1 5 81 572 PP. Labuan Padang Small Dropline 1 1								
72 572 Desa Belotakha Nias Utara Nano Longline 25 197 73 572 Desa Helera Nias Utara Small Longline 2 11 74 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Muara Padang Padang Small Longline 4 21 76 572 PP. Bungus Padang Medium Dropline 4 22 78 572 PP. Muaro Padang Medium Dropline 5 61 80 572 PP. Muaro Padang Small Dropline 5 61 81 572 PP. Muaro Padang Small Dropline 5 41 82 572 PP. Labuan Padang Pariaman Nano Longline 5 41 82 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
73 572 Desa Helera Nias Utara Small Longline 2 11 74 572 Muara Padang Padang Medium Longline 1 11 75 572 Muara Padang Padang Small Dropline 4 21 75 572 PP. Bungus Padang Small Longline 1 8 78 572 PP. Muaro Padang Medium Longline 4 52 79 572 PP. Muaro Padang Small Longline 5 61 81 572 PP. Muaro Padang Small Longline 5 61 81 572 PP. Muaro Padang Small Longline 1 5 81 572 PP. Muaro Padang Small Longline 1 1 5 81 572 PP. Carocok Tarusan Pesiari Selatan Medium Longline 4 40								
74 572 Desa Helera Nias Utara Small Longline 2 11 75 572 Muara Padang Padang Small Dropline 4 21 76 572 PP. Bungus Padang Small Longline 1 8 78 572 PP. Muaro Padang Medium Longline 5 61 80 572 PP. Muaro Padang Small Longline 5 61 81 572 PP. Muaro Padang Small Longline 5 41 82 572 PP. Muaro Padang Small Longline 5 41 82 572 PP. Kuroro Padang Small Dropline 10 17 84 572 PP. Kahuan Padang Pariaman Nano Longline 29 152 84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 573								
75 572 Muara Padang Padang Medium Longline 1 11 76 572 Muara Padang Padang Small Dropline 4 21 77 572 PP. Bungus Padang Small Dropline 4 52 78 572 PP. Muaro Padang Medium Dropline 4 52 80 572 PP. Muaro Padang Small Dropline 1 5 81 572 PP. Muaro Padang Small Longline 5 41 82 572 Pantai Ualkan Padang Small Longline 10 17 83 572 PP. Labuan Padang Pariaman Nano Longline 4 40 84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 Desa Pulau Tunda Serang Small Dropline 5 23 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
76 572 Muara Padang Padang Small Dropline 4 21 77 572 PP. Bungus Padang Medium Dropline 4 52 78 572 PP. Muaro Padang Medium Longline 5 61 80 572 PP. Muaro Padang Small Dropline 1 5 81 572 PP. Muaro Padang Small Dropline 1 5 82 572 PP. Labuan Padang Pariaman Nano Longline 10 17 84 572 PP. Labuan Padaglag Small Dropline 10 17 84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Small Dropline 16 103 <								
77 572 PP. Bungus Padang Small Longline 1 8 79 572 PP. Muaro Padang Medium Dropline 4 52 80 572 PP. Muaro Padang Small Dropline 1 5 81 572 PP. Muaro Padang Small Longline 5 41 82 572 Pantai Uakan Padang Pariaman Nano Longline 10 17 83 572 PP. Labuan Pandeglang Small Dropline 29 152 84 572 PP. Kambang Pesisir Selatan Medium Longline 4 40 85 572 Desa Pulau Tunda Serang Nano Dropline 5 23 86 572 Desa Pulau Tunda Serang Small Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17			9	0				
85 572 PP. Muaro Padang Medium Longline 5 52 79 572 PP. Muaro Padang Medium Longline 5 61 80 572 PP. Muaro Padang Small Longline 5 41 81 572 PP. Muaro Padang Small Longline 5 41 82 572 PP. Labuan Padang Pariaman Nano Longline 10 17 84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Mano Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Grajagan Banyuwangi Nano Dropline 15 1446				<u> </u>				
79 572 P.P. Muaro Padang Medium Longline 5 61 80 572 P.P. Muaro Padang Small Dropline 1 5 81 572 P.P. Muaro Padang Small Longline 5 41 82 572 P.P. Labuan Padang Pariaman Nano Longline 4 10 17 83 572 P.P. Labuan Pandeglang Small Dropline 29 152 84 572 P.P. Kambang Pesisir Selatan Medium Longline 4 40 85 572 Desa Pulau Tunda Serang Nano Dropline 5 23 86 573 Desa Pulau Tunda Serang Small Dropline 6 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 P.P. Kedonganan Baduyuwangi Nano Dropline 45				9				
80 572 PP. Muaro Padang Small Dropline 1 5 81 572 PP. Muaro Padang Small Longline 5 41 82 572 PP. Labuan Padang Pariaman Nano Longline 20 152 84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Small Dropline 5 23 87 572 Desa Pulau Tunda Serang Small Dropline 16 103 86 573 Desa Pulau Tunda Serang Small Dropline 16 103 86 573 Desa Pulau Tunda Serang Small Dropline 16 103 80 573 PP. Kedonganan Baduwangi Nano Dropline 15				9				
81 572 PP. Muaro Padang Small Longline 5 41 82 572 Pantai Ulakan Padang Pariaman Nano Longline 10 17 83 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Nano Dropline 5 23 87 572 Desa Alor Kecil Alor Nano Dropline 25 17 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Grajagan Badung Nano Dropline 25 17 90 573 PP. Grajagan Banyuwangi Small Dropline 15 780 91 573 PP. Borcar Banyuwangi Medium Dropline 15				0				
82 572 Pantai Ulakan Padang Pariaman Nano Longline 10 17 83 572 PP. Labuan Pandeglang Small Dropline 29 152 44 4572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Nano Dropline 5 23 87 572 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Kedonganan Badung Nano Dropline 25 17 89 573 PP. Grajagan Banyuwangi Nano Dropline 150 780 90 573 PP. Grajagan Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Mano Dropline 1<				9				
83 572 PP. Labuan Pandeglang Small Dropline 29 152 84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Nano Dropline 5 23 87 572 Desa Pulau Tunda Serang Small Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Grajagan Badung Nano Dropline 452 1446 91 573 PP. Grajagan Banyuwangi Nano Dropline 15 780 92 573 PP. Pancer Banyuwangi Nano Dropline 1 15 93 573 PP. Pancer Banyuwangi Small Dropline 1				9				
84 572 PP. Carocok Tarusan Pesisir Selatan Medium Longline 4 40 85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Small Dropline 16 103 87 572 Desa Pulau Tunda Serang Small Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Kedonganan Badung Nano Dropline 452 1446 91 573 PP. Kedonganan Banyuwangi Nano Dropline 452 1446 91 573 PP. Grajagan Banyuwangi Small Dropline 15 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 94 573 PP. Pancer Banyuwangi Small Dropline <								
85 572 PP. Kambang Pesisir Selatan Medium Longline 3 30 86 572 Desa Pulau Tunda Serang Nano Dropline 5 23 87 573 Desa Pulau Tunda Serang Small Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Kedonganan Badung Nano Dropline 452 1446 90 573 PP. Grajagan Banyuwangi Medium Dropline 15 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Nano Dropline 15 625 94 573 PP. Pancer Banyuwangi Nano Dropline 12 625 95 573 PP. Atapupu Belu Nano Dropline 12 3 <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td>				0 0				
86 572 Desa Pulau Tunda Serang Nano Dropline 5 23 87 572 Desa Pulau Tunda Serang Small Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Kedonganan Badung Nano Dropline 452 1446 90 573 PP. Grajagan Banyuwangi Nano Dropline 150 780 91 573 PP. Grajagan Banyuwangi Medium Dropline 150 780 91 573 PP. Grajagan Banyuwangi Medium Dropline 150 780 93 573 PP. Pancer Banyuwangi Mano Dropline 174 348 94 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Atapupu Belu Nano Dropline 12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
87 572 Desa Pulau Tunda Serang Small Dropline 16 103 88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Kedonganan Badung Nano Dropline 30 56 90 573 PP. Grajagan Banyuwangi Nano Dropline 452 1446 91 573 PP. Grajagan Banyuwangi Small Dropline 1 15 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 780 93 573 PP. Pancer Banyuwangi Nano Dropline 12 34 48 453 PP. Pancer Banyuwangi Nano Dropline 12 34 48 453 PP. Pancer Banyuwangi Nano Dropline 12 3 4 49 573 PP. Pancer Banyuwangi Nano Dropline 12 3			9					
88 573 Desa Alor Kecil Alor Nano Dropline 25 17 89 573 PP. Kedonganan Badung Nano Dropline 30 56 90 573 PP. Grajagan Banyuwangi Nano Dropline 150 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Nano Dropline 174 348 94 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PA. Atapupu Belu Nano Dropline 12 3 96 573 PP. Rompo Bima Nano Dropline 15 15								
89 573 PP. Kedonganan Badung Nano Dropline 452 1446 90 573 PP. Grajagan Banyuwangi Nano Dropline 452 1446 91 573 PP. Grajagan Banyuwangi Small Dropline 150 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Nano Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Atapupu Belu Nano Dropline 12 3 96 573 PP. Rompo Bima Nano Longline 15 15				_				
90 573 PP. Grajagan Banyuwangi Nano Dropline 452 1446 91 573 PP. Grajagan Banyuwangi Small Dropline 150 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Nano Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Atapupu Belu Nano Dropline 12 3 96 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Sape Bima Nano Longline 16 16								
91 573 PP. Grajagan Banyuwangi Small Dropline 150 780 92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Nano Dropline 125 625 95 573 PP. Pancer Banyuwangi Small Dropline 125 625 73 78 78 78 78 78 78 78 78 78 78 78 78 79 89				9				
92 573 PP. Pancer Banyuwangi Medium Dropline 1 15 93 573 PP. Pancer Banyuwangi Nano Dropline 174 348 94 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 Atapupu Belu Nano Dropline 2 3 96 573 PP. Atapupu Belu Nano Dropline 3 4 97 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 162 553 100 573 PP. Sape Bima Nano Longline 1 6 101 573 PP. Sape Bima Nano Longline 1 6 101 573								
93 573 PP. Pancer Banyuwangi Nano Dropline 174 348 94 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 PP. Atapupu Belu Nano Dropline 2 3 96 573 PP. Atapupu Belu Nano Dropline 3 4 97 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 16 553 100 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Sape Bima Nano Longline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 1 6 102 573								
94 573 PP. Pancer Banyuwangi Small Dropline 125 625 95 573 Atapupu Belu Nano Dropline 2 3 96 573 PP. Atapupu Belu Nano Dropline 3 4 97 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 16 553 100 573 PP. Sape Bima Nano Dropline 1 6 101 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 1 6 103 573 Jetis Cilacap Nano Longline 1 2 104 573 Pela								
95 573 Atapupu Belu Nano Dropline 2 3 96 573 PP. Atapupu Belu Nano Dropline 3 4 97 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 162 553 100 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 1 6 102 573 PP. Tambakrejo Blitar Small Longline 1 6 103 573 Jetis Cilacap Nano Longline 1 2 104 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 106 573								
96 573 PP. Atapupu Belu Nano Dropline 3 4 97 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 1 6 101 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 15 30 102 573 PP.Tambakrejo Blitar Nano Longline 1 6 103 573 Jetis Cilacap Nano Longline 1 24 104 573 Pelab								
97 573 PP. Rompo Bima Nano Dropline 15 15 98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 162 553 100 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 1 6 103 573 PP. Tambakrejo Blitar Small Longline 1 6 103 573 Jetis Cilacap Nano Longline 1 6 104 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 38 236 108								
98 573 PP. Rompo Bima Nano Longline 57 44 99 573 PP. Sape Bima Nano Dropline 162 553 100 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 1 6 103 573 PP. Tambakrejo Blitar Small Longline 1 6 103 573 Pelabuhan Benoa Denpasar Medium Dropline 11 24 104 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 27 107 573 PP. Hu'u Dompu Small Dropline 1 22 107 573 PP. Puger Jember Nano Longline 50 160 <								
99 573 PP. Sape Bima Nano Dropline 162 553 100 573 PP. Sape Bima Small Dropline 1 6 101 573 PP. Tambakrejo Blitar Nano Longline 1 6 103 573 PP. Tambakrejo Blitar Small Longline 1 6 103 573 Petabuhan Benoa Denpasar Medium Dropline 11 241 105 573 Pelabuhan Benoa Denpasar Medium Dropline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 27 106 573 PP. Hu'u Dompu Small Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 38 236 108 573 PP. Puger Jembrana Nano Longline 50 160								
100 573 PP. Sape Bima Small Dropline 1 6 101 573 PP.Tambakrejo Blitar Nano Longline 1 6 102 573 PP.Tambakrejo Blitar Small Longline 1 6 103 573 Jetis Cilacap Nano Longline 30 26 104 573 Pelabuhan Benoa Denpasar Medium Dropline 11 241 105 573 PP. Tenau Kupang Denpasar Medium Dropline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 1 22 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 15 126 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
101 573 PP.Tambakrejo Blitar Nano Longline 15 30 102 573 PP.Tambakrejo Blitar Small Longline 1 6 103 573 Jetis Cilacap Nano Longline 30 26 104 573 Pelabuhan Benoa Denpasar Medium Dropline 11 241 105 573 PP. Tenau Kupang Denpasar Medium Longline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 1 22 108 573 PP. Buger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Dropline 36 97								
102 573 PP.Tambakrejo Blitar Small Longline 1 6 103 573 Jetis Cilacap Nano Longline 30 26 104 573 Pelabuhan Benoa Denpasar Medium Dropline 11 241 105 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 1 22 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97								
103 573 Jetis Cilacap Nano Longline 30 26 104 573 Pelabuhan Benoa Denpasar Medium Dropline 11 241 105 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 38 236 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Nano Dropline 50 87 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
104 573 Pelabuhan Benoa Denpasar Medium Dropline 11 241 105 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 38 236 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 113 573 Pelabuhan Sulamu Kupang Medium Longline 1								
105 573 Pelabuhan Benoa Denpasar Medium Longline 1 27 106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 38 236 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 113 573 Pelabuhan Sulamu Kupang Nano Dropline 50 87 114 573 PP. Mayangan Kupang Medium Longline 1								
106 573 PP. Tenau Kupang Denpasar Medium Dropline 1 22 107 573 PP. Hu'u Dompu Small Dropline 38 236 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 113 573 Pelabuhan Sulamu Kupang Nano Dropline 50 87 114 573 PP. Mayangan Kupang Medium Longline 1 29 115 573 PP. Oeba Kupang Kupang Nano Dropline 5 5 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				_				
107 573 PP. Hu'u Dompu Small Dropline 38 236 108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 113 573 Pelabuhan Sulamu Kupang Nano Dropline 50 87 114 573 PP. Mayangan Kupang Medium Longline 1 29 115 573 PP. Oeba Kupang Kupang Nano Dropline 5 5				-				
108 573 PP. Puger Jember Nano Longline 50 160 109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 113 573 Pelabuhan Sulamu Kupang Nano Dropline 50 87 114 573 PP. Mayangan Kupang Medium Longline 1 29 115 573 PP. Oeba Kupang Kupang Nano Dropline 5 5				-				
109 573 Desa Yeh Kuning Jembrana Nano Longline 150 126 110 573 PP. Pengambengan Jembrana Nano Longline 20 40 111 573 Desa Tablolong Kupang Nano Dropline 36 97 112 573 Pelabuhan Benoa Kupang Medium Dropline 1 27 113 573 Pelabuhan Sulamu Kupang Nano Dropline 50 87 114 573 PP. Mayangan Kupang Medium Longline 1 29 115 573 PP. Oeba Kupang Kupang Nano Dropline 5 5								
110573PP. PengambenganJembranaNanoLongline2040111573Desa TablolongKupangNanoDropline3697112573Pelabuhan BenoaKupangMediumDropline127113573Pelabuhan SulamuKupangNanoDropline5087114573PP. MayanganKupangMediumLongline129115573PP. Oeba KupangKupangNanoDropline55			9					
111573Desa TablolongKupangNanoDropline3697112573Pelabuhan BenoaKupangMediumDropline127113573Pelabuhan SulamuKupangNanoDropline5087114573PP. MayanganKupangMediumLongline129115573PP. Oeba KupangKupangNanoDropline55						_		
112573Pelabuhan BenoaKupangMediumDropline127113573Pelabuhan SulamuKupangNanoDropline5087114573PP. MayanganKupangMediumLongline129115573PP. Oeba KupangKupangNanoDropline55								
113573Pelabuhan SulamuKupangNanoDropline5087114573PP. MayanganKupangMediumLongline129115573PP. Oeba KupangKupangNanoDropline55								
114573PP. MayanganKupangMediumLongline129115573PP. Oeba KupangKupangNanoDropline55								
115 573 PP. Oeba Kupang Kupang Nano Dropline 5 5								
116 573 PP. Tenau Kupang Kupang Medium Dropline 21 347								
	116	573	PP. Tenau Kupang	Kupang	Medium	Dropline	21	347

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

117 573 P. Tenau Kupang Kupang Kupang Nano Dropline 6 22 166	Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
191 573 P. Tenau Kupang Kupang Small Dropline 21 164 121 573 Desa Vapidarogo Lembata Nano Dropline 20 14 121 573 P. Hadakewa Lembata Nano Dropline 20 26 123 573 P. Tanjung Luar Lombok Timur Medium Longline 14 141 121 573 P. Tanjung Luar Lombok Timur Mano Dropline 15 36 125 573 P. Tanjung Luar Lombok Timur Mano Dropline 15 36 126 573 P. Tanjung Luar Lombok Timur Medium Longline 1 10 126 573 Pulau Maringkik Lombok Timur Medium Longline 1 10 127 573 Pulau Maringkik Lombok Timur Medium Longline 1 10 128 573 P. Panjung Luar Lombok Timur Medium Longline 1 10 129 573 P. Poumako Mimika Medium Longline 1 10 129 573 P. Poumako Mimika Medium Longline 1 29 130 573 P. P. Poumako Mimika Medium Longline 1 29 131 573 P. Watukarung Pacitan Nano Longline 10 22 132 573 P. Watukarung Pangandaran Nano Longline 10 22 135 573 Desa Batutua Rote Ndao Nano Dropline 2 2 2 135 573 Desa Deseli Rote Ndao Nano Dropline 2 2 2 135 573 Desa Deseli Rote Ndao Nano Dropline 2 2 2 135 573 Sitabiumi Nano Longline 50 50 137 573 RSOP Kelas III Kupang Sumba Barat Nano Dropline 2 2 2 138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 7 16 139 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 2 2 2 141 573 Desa Pulau Bungin Sumbawa Nano Longline 50 50 141 573 Desa Pulau Bungin Sumbawa Nano Longline 50 2 2 141 573 Desa Pulau Bungin Sumbawa Nano Longline 50 2 2 142 573 Labuhan Mapin Sumbawa Nano Dropline 6 6 6 142 711 P. P. Kungalilat Bangka Small Trap 1 10 143 574 P. Wimi Batam Batam Small Trap 2 16 150 711 P. Fanjung Pandan Belitung	117	573	PP. Tenau Kupang	Kupang	Medium		3	72
120 573 Desa Tapolango Lembata Nano Dropline 20 14 121 573 P.P. Hadakewa Lembata Nano Dropline 30 26 123 573 P.P. Tanjung Luar Lombok Timur Medium Longline 14 141 124 573 P.P. Tanjung Luar Lombok Timur Nano Longline 13 36 125 573 P.P. Tanjung Luar Lombok Timur Nano Longline 30 101 126 573 P.P. Tanjung Luar Lombok Timur Nano Longline 30 101 127 573 P. Dulau Maringkik Lombok Timur Nano Longline 3 22 128 573 T.P. Kampung Ujung Manggaral Barat Nano Dropline 6 74 129 573 P.P. Watukarung Pacitan Nano Medium Longline 1 29 130 573 P.P. Watukarung Pangandaran Nano Congline 100 127 573 P.P. Cikidang Pangandaran Nano Congline 100 128 573 P.P. Cikidang Pangandaran Nano Congline 100 121 573 Desa Osesii Rote Ndao Nano Dropline 2 2 131 573 Desa Osesii Rote Ndao Nano Dropline 2 2 133 573 Desa Osesii Rote Ndao Nano Dropline 2 2 135 573 Sukabumi Sukabumi Nano Longline 50 50 136 573 Sukabumi Sukabumi Nano Longline 50 50 137 573 St.SOP Kelas III Kupang Sumba Barat Nano Dropline 2 2 138 573 Desa Palua Bungin Sumba Barat Nano Dropline 2 2 140 573 Desa Palua Bungin Sumbawa Nano Dropline 2 2 141 573 Desa Palua Bungin Sumbawa Nano Dropline 3 12 142 573 Labuban Mapin Sumbawa Nano Dropline 6 14 144 573 Desa Palua Bungin Sumbawa Nano Dropline 6 14 145 573 P.P. Labuban Lalar Sumbawa Nano Dropline 6 14 147 171 P.P. Sungalilat Bangka Timor Tengah Utara Nano Dropline 7 12 145 573 P.P. Wini Timor Tengah Utara Nano Dropline 7 12 146 571 P.P. Sungalilat Bangka Timor Nano Dropline 2 3 147 171 Batam Batam Small Trap 1 1 148 711 P.P. Manggar Beli	118	573						22
121 573 Desa waijarang Lembata Nano Dropline 20 26 123 573 P.P. Hadakewa Lembata Mano Dropline 30 26 124 573 P.P. Tanjung Luar Lombok Timur Medium Longline 14 14 125 573 P.P. Tanjung Luar Lombok Timur Mano Dropline 15 36 126 573 P.P. Tanjung Luar Lombok Timur Mano Dropline 15 36 126 573 P.P. Tanjung Luar Lombok Timur Medium Longline 1 10 126 573 Pulau Maringkik Lombok Timur Medium Medium Gengline 3 22 127 573 Pulau Maringkik Lombok Timur Medium Dropline 60 74 128 573 TPI Kampung Ujung Manggarai Barat Nano Dropline 60 74 139 573 P.P. Poumako Mimika Medium Medi								
122 573 PP. Hadakewa Lembata Nano Dropline 30 26 124 573 PP. Tanjung Luar Lombok Timur Medium Longline 1 10 125 573 PP. Tanjung Luar Lombok Timur Nano Dropline 1 10 126 573 Pulau Maringkik Lombok Timur Medium Longline 1 10 127 573 Pulau Maringkik Lombok Timur Medium Longline 3 22 128 573 PP. Bonjung Luar Lombok Timur Medium Dropline 6 74 129 573 Pulau Maringkik Lombok Timur Small Longline 3 22 129 573 PP. Quanako Mimika Medium Gillnet 1 29 130 573 PP. Watukarung Pacitan Nano Dropline 6 74 131 573 PP. Gikidang Pangandaran Small Gillnet 8 50 132 573 PP. Gikidang Pangandaran Small Gillnet 8 50 133 573 Desa Batutua Rote Ndao Nano Dropline 9 11 134 573 Desa Osesi Rote Ndao Nano Dropline 2 2 135 573 Dusan Papela Rote Ndao Nano Dropline 2 2 136 573 Sukabumi Nano Longline 50 50 137 573 Stabutan Sukabumi Nano Longline 50 50 138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 149 573 Desa Pulau Bungin Sumbawa Nano Dropline 2 2 2 141 573 Desa Pulau Bungin Sumbawa Nano Dropline 2 2 2 142 573 Labuhan Mapin Sumbawa Nano Dropline 2 2 2 144 573 Desa Pulau Bungin Sumbawa Nano Dropline 2 2 2 145 573 Labuhan Mapin Sumbawa Nano Dropline 6 4 4 146 711 PP. Sungailiat Bangka Small Dropline 7 12 147 571 Batam Batam Small Dropline 7 12 148 571 PP. Wangailiat Bangka Small Dropline 7 12 149 571 Batam Batam Small Dropline 6 4 4 150 711 PP. Manggar Belitung Timur Belitung Small Dropline 7 2 5 150 711 PP. Manggar Belitung Timur Belitung Small Trap 7 4 5 150 711 PP. Manggar Belitung Timur Belitung Small Trap 2 4 5 5 5 150 711 PP. Manggar Belitung Timur	120	573		Lembata	Nano		20	14
123 573 P.P. Tanjung Luar Lombok Timur Medium Longline 14 141 124 573 P.P. Tanjung Luar Lombok Timur Nano Dropline 15 36 125 573 P.P. Tanjung Luar Lombok Timur Medium Longline 1 10 126 573 P. Ilan Maringkik Lombok Timur Medium Longline 1 10 127 573 P. Julan Maringkik Lombok Timur Medium Longline 3 22 128 573 TPI Kampung Ujung Manggarai Barat Nano Dropline 60 74 129 573 P.P. Poumako Mimika Medium Gilhet 1 29 130 573 P.P. Evantako Mimika Medium Gilhet 1 29 131 573 P.P. Cikidang Pangandaran Nano Longline 100 222 132 573 P.P. Cikidang Pangandaran Nano Gilhet 2 9 133 573 Desa Batuttia Rote Ndao Nano Dropline 2 2 135 573 Desa Deseli Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 2 2 136 573 Sukabumi Nano Longline 5 50 137 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 2 5 50 138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 3 8 14 139 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 2 2 2 140 573 Desa Pulau Bungin Sumbawa Nano Longline 7 16 141 573 Desa Pulau Bungin Sumbawa Nano Longline 7 16 142 573 Labuhan Mapin Sumbawa Nano Longline 5 17 144 573 Desa Pulau Bungin Sumbawa Nano Dropline 15 12 145 573 P.P. Wingalilat Bangka Small Trap 1 10 146 711 P.P. Sungalilat Bangka Small Trap 1 10 147 711 P.P. Sungalilat Bangka Small Trap 1 10 148 711 P.P. Sungalilat Bangka Small Trap 1 10 149 711 P.P. Manggar Belitung Timur Baltung Small Trap 1 4 150 711 Batam Batam Batam Small Trap 1 4 151 711 P.P. Manggar Belitung Timur Belitung Timur Medium Trap 2 4 150 711 P.P. Manggar Belitung			Desa waijarang	Lembata	Nano			
124 573 PP. Tanjung Luar Lombok Timur Nano Dropline 15 36		573	PP. Hadakewa	Lembata	Nano		30	26
125 573				Lombok Timur	Medium			
126 573					Nano			36
127 573							39	101
1285 5733 TPI Kampung Ujung Manggarai Barat Nano Dropline 60 74 129 573 PP. P. Watukarung Pacitan Nano Longline 10 222 131 573 PP. Cikidang Pangandaran Small Gillnet 8 50 132 573 Desa Batutua Rote Ndao Nano Gillnet 2 9 133 573 Desa Batutua Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 Sukabumi Subabami Nano Dropline 8 14 139 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 2 23 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 2								
129 573 PP. Deumako Mimika Medium Gilhet 1 29 130 573 PP. Watukarung Pacitan Nano Longline 100 222 131 573 PP. Cikidang Pangandaran Small Gilhet 2 9 132 573 PP. Cikidang Pangandaran Nano Oropline 2 2 133 573 Desa Ocseli Rote Ndao Nano Dropline 20 2 134 573 Dusun Papela Rote Ndao Nano Dropline 20 21 138 573 Dusun Papela Rote Ndao Nano Dropline 20 23 137 573 Dusun Papela Rote Ndao Nano Dropline 20 23 137 573 Dusun Papela Sumbama Nano Dropline 8 14 139 573 Desa Pulau Bungin Sumbawa Nano Longline 7 12	127				Small			22
130 573 PP Cikidang Pacitan Nano Longline 100 222 131 573 PP Cikidang Pangandaran Nano Gillhet 2 9 133 573 Desa Batutua Rote Ndao Nano Dropline 2 2 135 573 Desa Descli Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 Dusun Papela Runba Nano Dropline 8 8 138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 7 16 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 6 12 <td></td> <td></td> <td>TPI Kampung Ujung</td> <td>Manggarai Barat</td> <td>Nano</td> <td>Dropline</td> <td>60</td> <td>74</td>			TPI Kampung Ujung	Manggarai Barat	Nano	Dropline	60	74
131 573 PP Cikidang Pangandaran Small Gillnet 8 50 132 573 PPC Cikidang Pangandaran Nano Gillnet 2 9 133 573 Desa Batutua Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 Sukabumi Nano Dropline 20 21 137 573 Sukabumi Nano Dropline 35 80 137 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 139 573 Pelabuhan Waingapu Sumbawa Nano Longline 7 16 140 573 Desa Pulau Bungin Sumbawa Nano Longline 12 12 142 573 Labuhan Mapin Sumbawa Nano Dropline 61 43 43 573					Medium		1	
132 573 PP. Cikidang Pangandaran Nano Gillnet 2 9 133 573 Desa Batutua Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 Sukabumi Suababumi Nano Dropline 35 50 137 573 KSOP Kelas III Kupang Sumba Barat Nano Dropline 35 80 138 573 Pelabuhan Waingapu Sumba Barat Nano Longline 7 16 140 573 Desa Pulau Bungin Sumbawa Nano Longline 15 12 142 573 Labuhan Mapin Sumbawa Nano Longline 35 17 143 573 Labuhan Mapin Sumbawa Nano Longline 22 22 145 573 P. Wini Timor Tengah Utara Nano Dropline 2	130						100	222
133 573 Desa Batutua Rote Ndao Nano Dropline 9 11 134 573 Desa Oeseli Rote Ndao Nano Dropline 2 2 136 573 Sukabumi Rote Ndao Nano Dropline 2 2 136 573 Sukabumi Sukabumi Nano Dropline 50 50 137 573 Sukabumi Sumba Barat Nano Dropline 35 80 138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 139 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 29 23 141 573 Desa Pulau Bungin Sumbawa Nano Dropline 15 12 142 573 Labuhan Mapin Sumbawa Nano Dropline 25 22 143 573 P. Labuhan Mapin Sumbawa Nano Dropline 25 22 144 573 P. Labuhan Mapin Sumbawa Nano Dropline 25 22 145 573 P. Wini Timor Tengah Utara Nano Dropline 25 22 146 711 P. Sungailiat Bangka Medium Trap 1 10 147 711 P. Sungailiat Bangka Small Dropline 1 6 148 711 P. Sungailiat Bangka Small Dropline 1 6 147 711 P. Sungailiat Bangka Small Trap 30 159 150 711 Batam Batam Medium Trap 2 56 151 711 Batam Batam Small Trap 1 1 152 711 Batam Batam Small Trap 2 13 153 711 P. Tanjung Pandan Belitung Small Trap 9 164 155 711 P. Tanjung Pandan Belitung Small Trap 9 164 155 711 P. Tanjung Pandan Belitung Small Trap 3 20 157 711 P. Tanjung Pandan Belitung Small Trap 3 42 150 711 P. Manggar Belitung Timur Belitung Small Trap 3 42 156 711 P. Manggar Belitung Timur Belitung Small Trap 3 42 157 711 P. Manggar Belitung Timur Belitung Small Trap 2 450 158 711 P. Manggar Belitung Timur Belitung Timur Small Dropline 2 21 150 711 P. Manggar Belitung Timur Belitung Timur Small Dropline 2 33 150 711 P. Manggar Belitun	131	573	PP Cikidang		Small			50
134 573 Desa Oeseli Rote Ndao Nano Dropline 2 2 135 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 SkOP Kelas III Kupang Sumba Barat Nano Dropline 35 80 137 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 7 16 140 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 29 23 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 29 23 142 573 Labuhan Mapin Sumbawa Nano Longline 35 17 142 573 Labuhan Mapin Sumbawa Nano Longline 35 17 144 573 Labuhan Mapin Sumbawa Nano Dropline 25 22 145 573 PP. Win Timor Tengah Utara Nano Dropline	132	573	PP. Cikidang	Pangandaran	Nano	Gillnet	2	9
135 573 Dusun Papela Rote Ndao Nano Dropline 20 21 136 573 Sukabumi Sukabumi Nano Longline 50 50 137 573 Relabuhan Waingapu Sumba Barat Nano Dropline 8 14 140 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 6 16 140 573 Desa Pulau Bungin Sumbawa Nano Longline 15 12 141 573 Desa Pulau Bungin Sumbawa Nano Longline 15 12 142 573 Labuhan Mapin Sumbawa Nano Longline 35 17 144 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP. Sungailiat Bangka Medium Trap 1 10 147 711 PP. Sungailiat Bangka Small Dropline 1				Rote Ndao	Nano	Dropline		11
136 573 Sukabumi Sumba Barat Nano Longline 50 50 137 573 KSOP Kelas III Kupang Sumba Barat Nano Dropline 35 86 138 573 Pelabuhan Waingapu Sumba Barat Nano Longline 7 16 140 573 Pelabuhan Waingapu Sumbawa Nano Longline 15 12 141 573 Desa Pulau Bungin Sumbawa Nano Dropline 61 43 142 573 Labuhan Mapin Sumbawa Nano Longline 35 17 143 573 Labuhan Mapin Sumbawa Nano Dropline 25 22 145 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP Labuhan Lalar Sumbawa Nano Dropline 27 12 145 711 PP. Sungailiat Bangka Medium Trap	134	573	Desa Oeseli	Rote Ndao	Nano	Dropline		2
137 573 KSOP Kelas III Kupang Sumba Barat Nano Dropline 35 80 138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 139 573 Pelabuhan Waingapu Sumbawa Nano Longline 7 16 140 573 Desa Pulau Bungin Sumbawa Nano Longline 15 12 145 573 Labuhan Mapin Sumbawa Nano Longline 35 17 144 573 Labuhan Mapin Sumbawa Nano Dropline 25 22 145 573 PL Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP. Wini Timor Tengah Utara Nano Dropline 25 22 146 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap <td< td=""><td>135</td><td></td><td>Dusun Papela</td><td>Rote Ndao</td><td>Nano</td><td>Dropline</td><td></td><td>21</td></td<>	135		Dusun Papela	Rote Ndao	Nano	Dropline		21
138 573 Pelabuhan Waingapu Sumba Barat Nano Dropline 8 14 139 573 Pelabuhan Waingapu Sumba Barat Nano Longline 7 16 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 12 23 141 573 Labuhan Mapin Sumbawa Nano Dropline 61 43 143 573 Labuhan Mapin Sumbawa Nano Dropline 65 17 144 573 PL Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP Labuhan Lalar Timor Tengah Utara Nano Dropline 7 12 14 573 PP Labuhan Lalar Bangka Medium Trap 1 10 10 14 711 PP. Sungailiat Bangka Small Dropline 1 6 6 148 711 PP. Sungailiat Bangka Small Dropline 1 <t< td=""><td></td><td></td><td></td><td>Sukabumi</td><td>Nano</td><td>Longline</td><td></td><td>50</td></t<>				Sukabumi	Nano	Longline		50
139 573 Pelabuhan Waingapu Sumba Barat Nano Longline 7 16 140 573 Desa Pulau Bungin Sumbawa Nano Dropline 29 23 141 573 Desa Pulau Bungin Sumbawa Nano Longline 61 43 143 573 Labuhan Mapin Sumbawa Nano Dropline 25 22 145 573 PP Labuhan Lalar Sumbawa Nano Dropline 7 12 146 713 PP. Wini Timor Tengah Utara Nano Dropline 7 12 146 711 PP. Sungailiat Bangka Medium Trap 1 10 148 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 1 16 148 711 PP. Kurau Bangka Small Trap 2 56 <td>137</td> <td>573</td> <td>KSOP Kelas III Kupang</td> <td>Sumba Barat</td> <td>Nano</td> <td>Dropline</td> <td>35</td> <td>80</td>	137	573	KSOP Kelas III Kupang	Sumba Barat	Nano	Dropline	35	80
140 573 Desa Pulau Bungin Sumbawa Nano Dropline 29 23 141 573 Desa Pulau Bungin Sumbawa Nano Longline 15 12 142 573 Labuhan Mapin Sumbawa Nano Dropline 35 17 144 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 146 711 PP. Sungailiat Bangka Medium Trap 1 10 147 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 1 6 149 711 PP. Sungailiat Bangka Tengah Small Trap 1	138	573	Pelabuhan Waingapu	Sumba Barat	Nano	Dropline	8	14
141 573 Desa Pulau Bungin Sumbawa Nano Longline 15 12 142 573 Labuhan Mapin Sumbawa Nano Longline 35 17 143 573 Labuhan Mapin Sumbawa Nano Longline 35 17 144 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP. Wini Timor Tengah Utara Nano Dropline 7 12 146 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 17 133 149 711 Batam Batam Medium Trap 2 12 150 711 Batam Batam Small Trap 2 13 <t< td=""><td>139</td><td>573</td><td>Pelabuhan Waingapu</td><td>Sumba Barat</td><td>Nano</td><td>Longline</td><td>7</td><td>16</td></t<>	139	573	Pelabuhan Waingapu	Sumba Barat	Nano	Longline	7	16
142 573 Labuhan Mapin Sumbawa Nano Dropline 61 43 143 573 Labuhan Mapin Sumbawa Nano Longline 35 17 144 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP. Wini Timor Tengah Utara Nano Dropline 7 12 146 711 PP. Sungailiat Bangka Medium Trap 1 10 147 711 PP. Sungailiat Bangka Small Trap 1 6 148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 17 2 56 150 711 Batam Batam Medium Trap 2 56 151 711 Batam Small Trap 1 9 152	140		Desa Pulau Bungin		Nano		29	23
143 573 Labuhan Mapin Sumbawa Nano Drogline 25 22 144 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP. Wini Timor Tengah Utara Nano Dropline 7 12 146 711 PP. Sungailiat Bangka Medium Trap 1 16 148 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 30 159 150 711 Batam Batam Medium Trap 2 56 151 711 Batam Batam Small Trap 1 9 152 711 Beltam Belitung Medium Trap 1 9 153	141	573		Sumbawa	Nano	Longline	15	12
144 573 PP Labuhan Lalar Sumbawa Nano Dropline 25 22 145 573 PP Wini Timor Tengah Utara Nano Dropline 7 12 146 711 PP. Sungailiat Bangka Medium Trap 1 10 147 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 17 133 149 711 Batam Betam Medium Trap 2 56 150 711 Batam Batam Small Trap 2 12 152 711 Batam Batam Small Trap 2 13 153 711	142	573	Labuhan Mapin	Sumbawa	Nano	Dropline	61	43
145 573 PP. Wini Timor Tengah Utara Nano Dropline 7 12 146 711 PP. Sungailiat Bangka Medium Trap 1 10 147 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Small Trap 30 159 150 711 Batam Batam Medium Trap 2 56 151 711 Batam Small Dropline 2 12 152 711 Batam Batam Small Trap 2 13 153 711 PP. Manggar Belitung Medium Trap 9 164 155 711 PP. Tanjung Pandan Belitung Nano Trap 63 202 157 711 <td< td=""><td>143</td><td>573</td><td>Labuhan Mapin</td><td>Sumbawa</td><td>Nano</td><td></td><td></td><td>17</td></td<>	143	573	Labuhan Mapin	Sumbawa	Nano			17
146 711 PP. Sungailiat Bangka Medium Trap 1 10 147 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Tengah Small Trap 30 159 150 711 Batam Batam Medium Trap 2 56 151 711 Batam Batam Small Dropline 2 12 152 711 Batam Small Trap 2 13 153 711 PP. Manggar Belitung Small Trap 1 9 154 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 155 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711	144	573	PP Labuhan Lalar	Sumbawa	Nano			22
147 711 PP. Sungailiat Bangka Small Dropline 1 6 148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Tengah Small Trap 30 159 150 711 Batam Batam Medium Trap 2 56 151 711 Batam Batam Small Dropline 2 12 152 711 Batam Batam Small Trap 2 13 153 711 PP. Manggar Belitung Medium Trap 1 9 154 711 PP. Tanjung Pandan Belitung Mano Dropline 10 250 156 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 <td< td=""><td>145</td><td>573</td><td></td><td>Timor Tengah Utara</td><td>Nano</td><td>Dropline</td><td>7</td><td>12</td></td<>	145	573		Timor Tengah Utara	Nano	Dropline	7	12
148 711 PP. Sungailiat Bangka Small Trap 17 133 149 711 PP. Kurau Bangka Tengah Small Trap 30 159 150 711 Batam Medium Trap 2 56 151 711 Batam Small Dropline 2 12 152 711 Batam Small Trap 2 13 153 711 PP. Manggar Belitung Small Trap 2 13 153 711 PP. Tanjung Pandan Belitung Medium Trap 9 164 155 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 156 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 159 711 PP. Manggar Belitung	146				Medium		1	
149 711 PP. Kurau Bangka Tengah Small Trap 30 159 150 711 Batam Medium Trap 2 56 151 711 Batam Small Dropline 2 12 152 711 Batam Small Trap 2 13 153 711 PP. Manggar Belitung Small Trap 1 9 154 711 PP. Tanjung Pandan Belitung Medium Trap 1 9 155 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 156 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 157 711 PP. Tanjung Pandan Belitung Small Trap 72 450 159 711 PP. Manggar Belitung Timur Belitung Small Trap 72 450 159 711 PP. Manggar Belitung Timur </td <td>147</td> <td>711</td> <td>PP. Sungailiat</td> <td>Bangka</td> <td>Small</td> <td>Dropline</td> <td>1</td> <td></td>	147	711	PP. Sungailiat	Bangka	Small	Dropline	1	
150 711 Batam Batam Medium Trap 2 56 151 711 Batam Small Dropline 2 12 152 711 Batam Small Trap 2 13 153 711 PP. Manggar Belitung Small Trap 1 9 154 711 PP. Tanjung Pandan Belitung Medium Trap 9 164 155 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 156 711 PP. Tanjung Pandan Belitung Nano Trap 63 202 157 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Bandan Belitung Small Trap 72 450 159 711 Tanjung Binga Belitung Small Trap 72 450 159 711	148	711	PP. Sungailiat	Bangka	Small	Trap		133
151 711 Batam Batam Small Dropline 2 12 152 711 Batam Small Trap 2 13 153 711 PP. Manggar Belitung Small Trap 1 9 154 711 PP. Tanjung Pandan Belitung Medium Trap 9 164 155 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 156 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Trap 72 450 159 711 Tanjung Binga Belitung Small Trap 2 10		711	PP. Kurau	Bangka Tengah	Small	Trap		159
152 711 Batam Batam Small Trap 2 13 153 711 PP. Manggar Belitung Small Trap 1 9 154 711 PP. Tanjung Pandan Belitung Medium Trap 9 164 155 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 156 711 PP. Tanjung Pandan Belitung Nano Trap 63 202 157 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 159 711 Tanjung Bindan Belitung Small Trap 72 450 159 711 PP. Manggar Belitung Timur Belitung Timur Nano Dropline <td< td=""><td>150</td><td>711</td><td>Batam</td><td>Batam</td><td>Medium</td><td>Trap</td><td></td><td>56</td></td<>	150	711	Batam	Batam	Medium	Trap		56
153711PP. ManggarBelitungSmallTrap19154711PP. Tanjung PandanBelitungMediumTrap9164155711PP. Tanjung PandanBelitungNanoDropline108250156711PP. Tanjung PandanBelitungNanoTrap63202157711PP. Tanjung PandanBelitungSmallDropline527158711PP. Tanjung PandanBelitungSmallTrap72450159711Tanjung BingaBelitungSmallTrap20192160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap204 <t< td=""><td>151</td><td>711</td><td>Batam</td><td>Batam</td><td>Small</td><td>Dropline</td><td>2</td><td>12</td></t<>	151	711	Batam	Batam	Small	Dropline	2	12
154 711 PP. Tanjung Pandan Belitung Medium Trap 9 164 155 711 PP. Tanjung Pandan Belitung Nano Dropline 108 250 156 711 PP. Tanjung Pandan Belitung Nano Trap 63 202 157 711 PP. Tanjung Pandan Belitung Small Dropline 5 27 158 711 PP. Tanjung Pandan Belitung Small Trap 72 450 159 711 Tanjung Binga Belitung Small Trap 72 450 159 711 PP. Manggar Belitung Timur Belitung Timur Medium Trap 20 192 160 711 PP. Manggar Belitung Timur Belitung Timur Nano Dropline 5 21 162 711 PP. Manggar Belitung Timur Belitung Timur Small Dropline 2 10 164 711 PP. Manggar Belitung Timur Belitung T	152	711	Batam	Batam	Small	Trap	2	13
155711PP. Tanjung PandanBelitungNanoDropline108250156711PP. Tanjung PandanBelitungNanoTrap63202157711PP. Tanjung PandanBelitungSmallDropline527158711PP. Tanjung PandanBelitungSmallTrap72450159711Tanjung BingaBelitungSmallTrap20192160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap28167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallTrap17171711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111<	153	711	PP. Manggar	Belitung	Small	Trap	1	9
156711PP. Tanjung PandanBelitungNanoTrap63202157711PP. Tanjung PandanBelitungSmallDropline527158711PP. Tanjung PandanBelitungSmallTrap72450159711Tanjung BingaBelitungSmallTrap20192160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline20	154	711	PP. Tanjung Pandan	Belitung	Medium	Trap	9	164
157711PP. Tanjung PandanBelitungSmallDropline527158711PP. Tanjung PandanBelitungSmallTrap72450159711Tanjung BingaBelitungSmallTrap20192160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap244587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap17171711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298<	155	711		Belitung	Nano	Dropline	108	250
158711PP. Tanjung PandanBelitungSmallTrap72450159711Tanjung BingaBelitungSmallTrap20192160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924 </td <td>156</td> <td></td> <td>PP. Tanjung Pandan</td> <td>Belitung</td> <td>Nano</td> <td>Trap</td> <td>63</td> <td></td>	156		PP. Tanjung Pandan	Belitung	Nano	Trap	63	
159711Tanjung BingaBelitungSmallTrap20192160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924		711					5	27
160711PP. Manggar Belitung TimurBelitung TimurMediumTrap342161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924	158	711			Small		72	
161711PP. Manggar Belitung TimurBelitung TimurNanoDropline521162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924	159	711			Small	Trap		192
162711PP. Manggar Belitung TimurBelitung TimurNanoTrap14163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924	160	711			Medium		3	42
163711PP. Manggar Belitung TimurBelitung TimurSmallDropline210164711PP. Manggar Belitung TimurBelitung TimurSmallTrap87481165711PP. KijangBintanMediumDropline233166711PP. KijangBintanMediumTrap2414587167711PP. KijangBintanNanoTrap28168711PP. KijangBintanSmallDropline1066169711PP. KijangBintanSmallTrap2041385170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924		711			Nano		5	21
164 711 PP. Manggar Belitung Timur Belitung Timur Small Trap 87 481 165 711 PP. Kijang Bintan Medium Dropline 2 33 166 711 PP. Kijang Bintan Medium Trap 241 4587 167 711 PP. Kijang Bintan Nano Trap 2 8 168 711 PP. Kijang Bintan Small Dropline 10 66 169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24		711		9				4
165 711 PP. Kijang Bintan Medium Dropline 2 33 166 711 PP. Kijang Bintan Medium Trap 241 4587 167 711 PP. Kijang Bintan Nano Trap 2 8 168 711 PP. Kijang Bintan Small Dropline 10 66 169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24	163	711	PP. Manggar Belitung Timur	Belitung Timur			2	10
166 711 PP. Kijang Bintan Medium Trap 241 4587 167 711 PP. Kijang Bintan Nano Trap 2 8 168 711 PP. Kijang Bintan Small Dropline 10 66 169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24	164	711	PP. Manggar Belitung Timur	Belitung Timur	Small	Trap	87	481
167 711 PP. Kijang Bintan Nano Trap 2 8 168 711 PP. Kijang Bintan Small Dropline 10 66 169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24	165	711	PP. Kijang	Bintan	Medium	Dropline	2	33
168 711 PP. Kijang Bintan Small Dropline 10 66 169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24	166	711		Bintan	Medium			
169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24	167	711	PP. Kijang	Bintan	Nano	Trap	2	8
169 711 PP. Kijang Bintan Small Trap 204 1385 170 711 Moro Karimun Small Trap 1 7 171 711 Tanjung Balai Karimun Karimun Medium Longline 5 111 172 711 PP. Tarempa Kepulauan Anambas Nano Dropline 202 298 173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24		711	PP. Kijang	Bintan	Small	Dropline	10	66
170711MoroKarimunSmallTrap17171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924		711		Bintan	Small	Trap	204	1385
171711Tanjung Balai KarimunKarimunMediumLongline5111172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924		711		Karimun	Small	Trap	1	7
172711PP. TarempaKepulauan AnambasNanoDropline202298173711PP. TarempaKepulauan AnambasNanoTrap1924						_		
173 711 PP. Tarempa Kepulauan Anambas Nano Trap 19 24								
		711			Small		11	63

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size		N	Total GT
175	711	PPI Ladan	Kepulauan Anambas	Nano	Dropline	73	182
176	711	PPI Ladan	Kepulauan Anambas	Small	Dropline	1	5
177	711	Pangkal Balam	Kota Pangkalpinang	Nano	Dropline	2	7
178	711	Pangkal Balam	Kota Pangkalpinang	Nano	Trap	1	4
179	711	Pangkal Balam	Kota Pangkalpinang	Small	Trap	12	67
180	711	PP. Muara Sungai Baturusa	Kota Pangkalpinang	Nano	Trap	3	12
181	711	PP. Muara Sungai Baturusa	Kota Pangkalpinang	Small	Trap	9	51
182	711	Dermaga Kayu Sededap	Natuna	Nano	Dropline	1	5
183	711	Desa Air Nusa	Natuna	Nano	Dropline	23	43
184	711	Desa Air Ringau	Natuna	Nano	Dropline	12	18
185	711	Desa Batu Ampar	Natuna	Nano	Dropline	5	4
186	711	Desa Batu Brilian	Natuna	Nano	Dropline	21	44
187	711	Desa Batu Brilian	Natuna	Nano	Trap	1	4
188	711	Desa Pakkalung	Natuna	Nano	Dropline	1	2
189	711	Desa Sabang Mawang Barat	Natuna	Small	Dropline	12	72
190	711	Desa Sedanau	Natuna	Nano	Dropline	22	79
191	711	Desa Sepempang	Natuna	Small	Dropline	22	132
192	711	Desa Serantas_ Teluk Lagong	Natuna	Nano	Dropline	23	69
193	711	Desa Subi besar	Natuna	Nano	Dropline	23	69
194	711	Desa Tanjung Belau	Natuna	Nano	Dropline	31	56
195	711	Desa Tanjung Kumbik Utara	Natuna	Small	Dropline	15	90
196	711	Desa Tanjung Setelung	Natuna	Nano	Dropline	9	16
197	711	Desa Tanjung Setelung	Natuna	Nano	Trap	18	39
198	711	Desa Tanjung Setelung	Natuna	Small	Trap	3	18
199	711	Desa Teluk Buton	Natuna	Nano	Dropline	26	78
200	711	Natuna	Natuna	Large	Longline	3	94
201	711	Pelabuhan Harapan Air Putih	Natuna	Nano	Dropline	59	159
202	711	Pelabuhan Harapan Air Putih	Natuna	Small	Dropline	1	6
203	711	Pelabuhan Midai	Natuna	Medium	Dropline	1	12
204	711	Pelabuhan Midai	Natuna	Medium	Trap	2	22
205	711	Pelabuhan Midai	Natuna	Small	Dropline	2	11
206	711	Pelabuhan Pasir Putih	Natuna	Nano	Dropline	1	2
207	711	Pelabuhan Pering	Natuna	Medium	Dropline	2	30
208	711	Pelabuhan Pering	Natuna	Nano	Dropline	21	78
209	711	Pelabuhan Pering	Natuna	Small	Dropline	1	8
210	711	Pelabuhan Sabang Barat-Midai	Natuna	Medium	Trap	1	11
211	711	Pelabuhan Sabang Barat-Midai	Natuna	Small	Dropline	2	11
212	711	Pelabuhan Tanjung	Natuna	Nano	Dropline	30	59
213	711	Pering	Natuna	Nano	Dropline	1	4
214	711	PP. Pering	Natuna	Small	Dropline	1	5
215	711	PP. Tarempa	Natuna	Medium	Longline	1	18
216	711	Pulau Tiga Natuna	Natuna	Small	Dropline	1	8
217	711	Tanjung Balai Karimun	Natuna	Large	Longline	11	350
218	711	Tanjung Balai Karimun	Natuna	Medium	Longline	43	1223
219	711	PP. Bajomulyo	Pati	Large	Longline	1	85
220	711	PP. Kuala Mempawah	Pontianak	Medium	Trap	2	20
221	711	PP. Kuala Mempawah	Pontianak	Small	Trap	3	19
222	712	PP. Tanjung Pandan	Belitung	Nano	Trap	2	7
223	712	PP. Tanjung Pandan	Belitung	Small	Trap	12	63
224	712	Desa Parang	Jepara	Medium	Trap	26	404
225	712	Desa Parang	Jepara	Small	Trap	65	468
226	712	Pelabuhan Kartini, Jepara	Jepara	Nano	Longline	15	21
227	712	PP. Karimun Jawa	Jepara	Medium	Trap	8	104
228	712	PP. Karimun Jawa	Jepara	Small	Trap	4	37
229	712	TPI. Ujungbatu	Jepara	Nano	Longline	3	4
					_		
	712	Kelurahan Pulau Kelana Dua	Kepulauan Seribu	Small	Dropline	9	62
230 231	$712 \\ 712$	Kelurahan Pulau Kelapa Dua Kelurahan Pulau Pari	Kepulauan Seribu Kepulauan Seribu	Small $ Nano$	Dropline Trap	$\frac{9}{2}$	62 9

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
233	712	Kelurahan Pulau Untung Jawa	Kepulauan Seribu	Nano	Trap	20	36
234	712	Kelurahan Pulau Untung Jawa	Kepulauan Seribu	Small	Trap	8	51
235	712	PP. Brondong	Lamongan	Medium	Dropline	167	2158
236	712	PP. Brondong	Lamongan	Medium	Longline	14	176
237	712	PP. Brondong	Lamongan	Small	Dropline	115	880
238	712	PP. Brondong	Lamongan	Small	Longline	1	9
239	712	PP. Bajomulyo	Pati	Large	Longline	30	1432
240	712	PP. Bajomulyo	Pati	Medium	Longline	13	355
241	712	PP. Asem Doyong	Pemalang	Small	Dropline	10	57
242	712	PP. Mayangan	Probolinggo	Medium	Longline	1	29
243	712	PP. Pondok Mimbo	Situbondo	Nano	Longline	100	156
244	712	Desa Bancamara	Sumenep	Medium	Dropline	2	28
245	712	Desa Bancamara	Sumenep	Nano	Dropline	1	4
246	712	Desa Bancamara	Sumenep	Small	Dropline	102	702
247	712	Desa Masalima	Sumenep	Small	Dropline	12	84
248	712	Pagerungan Besar	Sumenep	Medium	Longline	4	41
249	712	Pagerungan Besar	Sumenep	Nano	Longline	21	28
250	712	Pagerungan Besar	Sumenep	Small	Longline	45	312
251	712	Pagerungan Kecil	Sumenep	Nano	Longline	30	36
252	712	PP. Dungkek	Sumenep	Medium	Dropline	3	32
252	712	PP. Dungkek	Sumenep	Nano	Dropline	2	9
254	712	PP. Dungkek	Sumenep	Small	Dropline	7	43
255	712	Sumenep	Sumenep	Small	Dropline	300	2196
$\frac{256}{256}$	712	Pagatan	Tanah Bumbu	Small	Dropline	2	10
$\frac{250}{257}$	712	PP. Cituis	Tanggerang	Small	Trap	7	64
258	713	PP. Filial Klandasan	Balikpapan	Nano	Dropline	2	8
$\frac{250}{259}$	713	PP. Filial Klandasan	Balikpapan	Small	Dropline	$\frac{2}{22}$	126
260	713	PP. Klandasan	Balikpapan	Small	Dropline	3	21
$\frac{260}{261}$	713	PP. Manggar Baru	Balikpapan	Medium	Dropline	16	$\begin{array}{c} 21 \\ 274 \end{array}$
262	713	PP. Manggar Baru	Balikpapan	Nano	Longline	10	3
263	713	PP. Manggar Baru	Balikpapan	Small	Dropline	1	5 6
$\frac{263}{264}$	713	PP. Manggar Baru	Balikpapan	Small	Longline	7	39
$\frac{264}{265}$	713	PP. Tanjung Pandan	Belitung	Nano	Trap	1	3
266	713	PP. Tanjung Pandan	Belitung	Small	Dropline	1	5
$\frac{260}{267}$	713	PP. Tanjung Pandan	Belitung	Small	Trap	4	21
268	713	PP. Kore	Bima	Nano	Dropline	10	33
269	713	Lok Tuan		Nano	Dropline	4	33 13
	713		Bontang	Nano	Dropline		13 11
$\frac{270}{271}$	713	PP. Tanjung Limau	Bontang			$\frac{5}{4}$	$\frac{11}{24}$
		PP. Tanjung Limau	Bontang	Small	Dropline		_
$\frac{272}{273}$	713 713	Tanjung Laut Desa Sangsit	Bontang Buleleng	Nano Nano	Dropline Dropline	1 50	1 15
$\frac{273}{274}$	713	PP. Dannuang	Bulukumba	Nano	Dropline	20	20
$\frac{274}{275}$	713	PP. Kalumeme	Bulukumba	Nano	Dropline	20	20
$\frac{275}{276}$		PP. Katumeme PP. Kota Bulukumba	Bulukumba	Nano			
	713	PP. Keramat			Dropline	300	300
$277 \\ 278$	713		Dompu	Nano	Longline Dropline	10	4
	713	PP. Malaju PP. Malaju	Dompu	Nano		1	1
279	713	•	Dompu	Nano	Longline Dropline	1	0
280	713	PP. Malaju PP. Soro Kempo	Dompu Dompu	Small		10 32	52
281	713	-	•	Nano	Longline		13
282	713	PP. Soro Kempo	Dompu	Small	Dropline	17	88
283	713	PP. Labean	Donggala Kalaka	Nano	Dropline	27	24
284	713	Anawoi DD Daha	Kolaka Kota Makagan	Medium	Trap	5 25	64
285	713	PP. Beba	Kota Makassar	Medium	Dropline	25 61	349
286	713	PP. Beba	Kota Makassar	Medium	Longline	61	735
287	713	PP. Beba	Kota Makassar	Nano	Longline	1	3
288	713	PP. Beba	Kota Makassar	Small	Dropline	1	8
289	713	PP. Beba	Kota Makassar	Small	Longline	3	24
290	713	Gang Kakap, Muara Jawa	Kutai Kartanegara	Nano	Longline	20	60

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size		N	Total GT
291	713	Kampung Terusan	Kutai Kartanegara	Small	Longline	10	85
292	713	Kuala Samboja	Kutai Kartanegara	Small	Longline	3	15
293	713	Pantai Biru Kersik	Kutai Kartanegara	Nano	Dropline	16	48
294	713	Semangkok	Kutai Kartanegara	Nano	Dropline	10	31
295	713	Maloy	Kutai Timur	Small	Dropline	1	5
296	713	Muara Selangkau	Kutai Timur	Nano	Dropline	40	120
297	713	PP. Kenyamukan	Kutai Timur	Medium	Dropline	3	32
298	713	PP. Kenyamukan	Kutai Timur	Nano	Dropline	40	40
299	713	PP. Kenyamukan	Kutai Timur	Small	Dropline	11	75
300	713	PP. Sangatta	Kutai Timur	Medium	Dropline	1	10
301	713	PP. Sangatta	Kutai Timur	Small	Dropline	5	31
302	713	PP. Brondong	Lamongan	Medium	Trap	1	19
303	713	Desa Wangatoa	Lembata	Nano	Dropline	20	23
304	713	Majene	Majene	Nano	Longline	38	114
305	713	Majene	Majene	Small	Dropline	1	7
306	713	Majene	Majene	Small	Longline	12	84
307	713	Pelabuhan Majene	Majene	Nano	Longline	34	96
308	713	PP. Rangas Majene	Majene	Nano	Longline	2	6
309	713	PP. Kasiwa	Mamuju	Nano	Dropline	31	93
310	713	PP. Kasiwa	Mamuju	Small	Dropline	4	20
311	713	PP. Labuhan Bajo	Manggarai Barat	Nano	Dropline	40	15
312	713	PP. Konge	Nagekeo	Nano	Dropline	30	8
313	713	Sumbawa	Pangkep	Nano	Longline	50	50
314	713	Muara Pasir	Paser	Nano	Longline	10	20
315	713	PP. Bajomulyo	Pati	Large	Longline	3	130
316	713	Kampung Pejala	Penajam Paser Utara	Nano	Dropline	2	7
317	713	Kampung Pejala	Penajam Paser Utara	Small	Dropline	17	85
318	713	Nenang	Penajam Paser Utara	Small	Trap	50	253
319	713	PP. Mayangan	Probolinggo	Medium	Longline	1	27
320	713	Desa Labuhan Sangoro	Sumbawa	Nano	Longline	20	37
321	713	Labuhan Sumbawa	Sumbawa	Medium	Dropline	1	17
322	713	Labuhan Sumbawa	Sumbawa	Nano	Dropline	3	12
323	713	Labuhan Sumbawa	Sumbawa	Small	Dropline	4	27
324	713	PP. Labuhan Terata	Sumbawa	Nano	Dropline	4	7
325	713	PP. Beba	Takalar	Medium	Dropline	2	25
326	713	PP. Beba	Takalar	Medium	Gillnet	12	185
327	713	PP. Beba	Takalar	Medium	Longline	19	244
328	713	PP. Beba	Takalar	Small	Dropline	2	17
329	713	PP. Beba	Takalar	Small	Gillnet	1	9
330	714	Kabola	Alor	Nano	Dropline	15	10
331	714	Kokar	Alor	Nano	Dropline	100	88
332	714	Banggai Kepulauan	Banggai Kepulauan	Nano	Dropline	10	10
333	714	Banggai Laut	Banggai Laut	Nano	Dropline	50	50
334	714	Bontosi	Banggai Laut	Nano	Dropline	1	3
335	714	Desa Bontosi	Banggai Laut	Nano	Dropline	1	2
336	714	Desa Matanga	Banggai Laut	Nano	Longline	5	4
337	714	Desa Tinakin Laut	Banggai Laut	Nano	Dropline	1	1
338	714	Kasuari	Banggai Laut	Nano	Longline	14	16
339	714	PP. Tanjung Pandan	Belitung	Small	Dropline	1	6
340	714	Desa Balimu	Buton	Nano	Dropline	5	6
341	714	Kelurahan Watolo	Buton Tengah	Nano	Gillnet	4	4
342	714	Kelurahan Watolo	Buton Tengah	Nano	Longline	13	13
343	714	Desa Tanjung Batu	Kepulauan Tanimbar	Nano	Dropline	1	2
344	714	Kampung Babar	Kepulauan Tanimbar	Nano	Dropline	1	4
345	714	Kampung Barbar	Kepulauan Tanimbar	Nano	Dropline	6	12
346	714	Pasar Baru Omele Saumlaki	Kepulauan Tanimbar	Nano	Dropline	6	13
347	714	Pasar Baru Omele Saumlaki	Kepulauan Tanimbar	Nano	Longline	1	3
348	714	Pasar Lama Saumlaki	Kepulauan Tanimbar	Nano	Dropline	1	$\overset{\circ}{2}$
0			. r			-	_

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
349	714	Saumlaki	Kepulauan Tanimbar	Nano	Dropline	3	8
350	714	PPI Soropia	Konawe	Medium	Trap	1	12
351	714	PPI Soropia	Konawe	Nano	Trap	1	1
352	714	Desa Labengki	Konawe Utara	Nano	Dropline	5	5
353	714	Labengki	Konawe Utara	Nano	Dropline	4	5
354	714	Labengki	Konawe Utara	Nano	Longline	1	1
355	714	Asilulu	Maluku Tengah	Nano	Dropline	30	56
356	714	Batu Lubang	Maluku Tengah	Nano	Dropline	30	53
357	714	PP. Tulehu	Maluku Tengah	Large	Dropline	1	34
358	714	Desa Langgur	Maluku Tenggara	Small	Dropline	1	10
359	714	Desa Selayar	Maluku Tenggara	Nano	Dropline	5	7
360	714	Desa Watdek	Maluku Tenggara	Small	Dropline	5	32
361	714	PP. Kema	Minahasa Utara	Large	Dropline	1	30
362	714	Desa Bahonsuai	Morowali	Nano	Dropline	3	3
363	714	Desa Moahino	Morowali	Nano	Longline	2	4
364	714	Desa Umbele	Morowali	Nano	Dropline	2	2
365	714	Desa Umbele	Morowali	Nano	Longline	2	4
366	714	Desa Limbo	Pulau Taliabu	Nano	Longline	30	18
367	714	Dusun Anauni	Seram Bagian Barat	Nano	Dropline	15	15
368	714	Dusun Anauni	Seram Bagian Barat	Nano	Longline	35	44
369	714	Dusun Huaroa	Seram Bagian Barat	Nano	Dropline	50	74
370	714	Dusun Huhua	Seram Bagian Barat	Nano	Dropline	20	27
371	714	Dusun Naeselan	Seram Bagian Barat	Nano	Dropline	20	33
372	714	Dusun Patinea	Seram Bagian Barat	Nano	Dropline	15	21
373	714	Dusun Pohon Batu	Seram Bagian Barat	Nano	Dropline	10	11
374	714	Dusun Waisela	Seram Bagian Barat	Nano	Dropline	4	4
375	714	Desa Mangon	Tual	Small	Dropline	1	7
376	714	PP. Tual	Tual	Medium	Dropline	1	28
377	714	PP. Tual	Tual	Nano	Dropline	1	2
378	714	PP. Tual	Tual	Small	Dropline	4	25
379	714	Binongko	Wakatobi	Medium	Dropline	1	13
380	714	Binongko	Wakatobi	Nano	Dropline	28	16
381	714	Dermaga Desa Wali	Wakatobi	Small	Dropline	1	5
382	714	Desa Lagongga	Wakatobi	Nano	Dropline	7	26
383	714	Desa Lagongga	Wakatobi	Small	Dropline	1	6
384	714	Desa Wali	Wakatobi	Nano	Dropline	2	8
385	714	Pelabuhan Lagelewa	Wakatobi	Nano	Dropline	1	3
386	715	Desa Jayabakti	Banggai	Nano	Dropline	51	40
387	715	Desa Jayabakti	Banggai	Nano	Longline	5	4
388	715	Pagimana	Banggai	Nano	Dropline	2	4
389	715	Pangkalaseang	Banggai	Nano	Dropline	10	10
390	715	Kampung Sekar	Fakfak	Nano	Dropline	7	7
391	715	Kampung Sosar, Kokas	Fakfak	Nano	Dropline	7	7
392	715	Kampung Ugar	Fakfak	Nano	Dropline	17	11
393	715	Pasar Sorpeha	Fakfak	Nano	Dropline	9	22
394	715	PP. PP. Dulan Pok-Pok	Fakfak	Nano	Dropline	215	206
395	715	Bacan	Halmahera Selatan	Nano	Dropline	9	5
396	715	Bacan	Halmahera Selatan	Nano	Longline	1	0
397	715	Bacan Barat	Halmahera Selatan	Nano	Dropline	6	2
398	715	Bacan Tengah	Halmahera Selatan	Nano	Dropline	24	8
399	715	Bacan Timur	Halmahera Selatan	Nano	Dropline	4	1
400	715	Bacan Utara	Halmahera Selatan	Nano	Dropline	5	2
401	715	Desa Akegula	Halmahera Selatan	Nano	Dropline	15	16
402	715	Desa Amasing Kota Barat	Halmahera Selatan	Nano	Longline	1	2
403	715	Desa Babang	Halmahera Selatan	Nano	Dropline	7	4
404	715	Desa Jikotamo	Halmahera Selatan	Nano	Dropline	15	20
405	715	Desa Laiwui	Halmahera Selatan	Nano	Dropline	12	13
406	715	Desa Lalei	Halmahera Selatan	Nano	Dropline	29	17

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
407	715	Desa Sali Kecil	Halmahera Selatan	Nano	Dropline	20	8
408	715	Desa Tabapoma	Halmahera Selatan	Nano	Dropline	11	4
409	715	Gane Barat	Halmahera Selatan	Nano	Dropline	15	5
410	715	Gane Timur Selatan	Halmahera Selatan	Nano	Dropline	40	13
411	715	Kep. Batang Lomang	Halmahera Selatan	Nano	Dropline	12	4
412	715	Kep. Joronga	Halmahera Selatan	Nano	Dropline	7	2
413	715	Mandioli Selatan	Halmahera Selatan	Nano	Dropline	13	4
414	715	Mandioli Utara	Halmahera Selatan	Nano	Dropline	17	5
415	715	Pasar Tembal	Halmahera Selatan	Nano	Dropline	30	13
416	715	Puau Obilatu	Halmahera Selatan	Nano	Dropline	10	3
417	715	Pulau Obi	Halmahera Selatan	Nano	Dropline	62	18
418	715	Buli	Halmahera Timur	Nano	Dropline	7	7
419	715	Halmahera Timur	Halmahera Timur	Nano	Dropline	48	78
420	715	Desa Trikora	Kaimana	Nano	Dropline	10	10
421	715	Kampung Air Merah	Kaimana	Nano	Dropline	33	33
422	715	Kampung Air Tiba	Kaimana	Nano	Dropline	10	10
423	715	Namatota	Kaimana	Medium	Dropline	2	49
424	715	Namatota	Kaimana	Medium	Longline	2	30
425	715	PU. Kaimana	Kaimana	Large	Longline	1	30
426	715	PU. Kaimana	Kaimana	Medium	Longline	2	43
427	715	Pasar Galala	Kota Tidore Kepulauan	Nano	Dropline	10	10
428	715	Desa Sawai	Maluku Tengah	Nano	Dropline	55	61
429	715	PP. Kema	Minahasa Utara	Large	Dropline	3	130
430	715	PP. Kema	Minahasa Utara	Medium	Dropline	11	320
431	715	Desa Geser	Seram Bagian Timur	Nano	Dropline	44	62
432	715	Desa Kilfura	Seram Bagian Timur	Nano	Dropline	31	27
433	715	Desa Kiltay	Seram Bagian Timur	Nano	Dropline	25	25
434	715	Desa Namalena	Seram Bagian Timur	Nano	Dropline	26	26
435	715	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Dropline	10	17
436	715	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Longline	10	17
437	715	Desa Waru	Seram Bagian Timur	Nano	Longline	2	3
438	715	Pulau Parang	Seram Bagian Timur	Nano	Dropline	10	17
439	715	Desa Kali Remu	Sorong	Nano	Dropline	2	6
440	715	Desa Kali Remu	Sorong	Nano	Trap	1	3
441	715	Jembatan Puri Sorong	Sorong	Medium	Dropline	4	75
442	715	Jembatan Puri Sorong	Sorong	Small	Dropline	3	20
443	715	PP. Sorong	Sorong	Medium	Dropline	9	170
444	715	PP. Sorong	Sorong	Medium	Longline	1	17
445	715	PP. Sorong	Sorong	Medium	Trap	10	153
446	715	PP. Sorong	Sorong	Nano	Dropline	3	11
447	715	PP. Sorong	Sorong	Small	Trap	2	18
448	715	Bajugan	Tolitoli	Nano	Dropline	10	6
449	716	Biduk-biduk	Berau	Medium	Dropline	1	22
450	716	Biduk-biduk	Berau	Nano	Dropline	23	69
451	716	Desa Tanjung Batu	Berau	Nano	Dropline	64	192
452	716	Giring-giring	Berau	Nano	Dropline	22	66
453	716	Labuan Cermin	Berau	Nano	Dropline	1	3
454	716	P. Derawan	Berau	Nano	Trap	4	7
455	716	Pantai Harapan	Berau	Nano	Dropline	20	60
456	716	Tanjung Batu	Berau	Nano	Trap	6	18
457	716	Tanjung Batu	Berau	Small	Trap	1	8
458	716	Teluk Sulaiman	Berau	Nano	Dropline	29	87
459	716	Desa Sampiro	Bolaang Mongondow Utara	Nano	Dropline	11	4
460	716	Desa Bulontio	Gorontalo Utara	Nano	Dropline	11	5
461	716	Desa Buluwatu	Gorontalo Utara	Nano	Dropline	21	16
462	716	Desa Huntokalo	Gorontalo Utara	Nano	Dropline	10	3
463	716	Desa Tihengo	Gorontalo Utara	Nano	Dropline	26	7
464	716	Desa Dalako Bembanehe	Kepulauan Sangihe	Nano	Dropline	4	2

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
465	716	Desa Lipang	Kepulauan Sangihe	Nano	Dropline	5	2
466	716	Desa Paruruang	Kepulauan Sangihe	Nano	Dropline	16	8
467	716	Desa Parururang	Kepulauan Sangihe	Nano	Dropline	5	2
468	716	Kampung Lipang	Kepulauan Sangihe	Nano	Dropline	5	1
469	716	Sangihe	Kepulauan Sangihe	Nano	Dropline	2	0
470	716	Tariang Baru	Kepulauan Sangihe	Nano	Longline	4	3
471	716	Buhias	Kepulauan Sitaro	Nano	Dropline	153	124
472	716	Mahongsawang Tagulandang	Kepulauan Sitaro	Nano	Dropline	8	4
473	716	Mongsawang	Kepulauan Sitaro	Nano	Dropline	16	6
474	716	Pulau Biaro	Kepulauan Sitaro	Nano	Dropline	29	7
475	716	Desa Damau	Kepulauan Talaud	Nano	Dropline	8	3
476	716	Dusun Bawunian	Kepulauan Talaud	Nano	Dropline	26	29
477	716	Belakang BRI, Selumit Pantai	Tarakan	Nano	Longline	46	138
478	716	Belakang BRI, Selumit Pantai	Tarakan	Small	Longline	4	20
479	716	Mamburungan Dalam	Tarakan	Nano	Dropline	48	144
480	717	Biak	Biak	Nano	Dropline	1796	1793
481	717	Desa Nikakamp	Biak	Nano	Dropline	4	7
482	717	Desa Tanjung Barari	Biak	Nano	Dropline	5	4
483	717	Fanindi Pantai	Manokwari	Nano	Dropline	10	26
484	717	Kampung Arowi 2	Manokwari	Nano	Dropline	4	9
485	717	Kampung Borobudur 2	Manokwari	Nano	Dropline	12	30
486	717	Kampung Fanindi	Manokwari	Nano	Dropline	20	22
487	717	Kampung Kimi	Nabire	Nano	Dropline	1	1
488	717	Kampung Smoker	Nabire	Nano	Dropline	4	9
489	717	Kampung Waharia	Nabire	Nano	Dropline	2	2
490	717	Pasar Kalibobo	Nabire	Nano	Dropline	1	4
491	717	PP. Sanoba	Nabire	Nano	Dropline	4	14
492	717	Wasior	Teluk Wondama	Nano	Dropline	19	23
493	718	PP. Nizam Zachman	Jakarta Utara	Large	Longline	4	205
494	718	Namatota	Kaimana	Large	Longline	1	72
495	718	Dusun Wamar Desa Durjela	Kepulauan Aru	Medium	Longline	4	73
496	718	PP. Bajomulyo	Kepulauan Aru	Large	Gillnet	1	82
497	718	PP. Benjina	Kepulauan Aru	Large	Longline	2	92
498	718	PP. Dobo	Kepulauan Aru	Large	Gillnet	8	527
499	718	PP. Dobo	Kepulauan Aru	Large	Longline	10	596
500	718	PP. Dobo	Kepulauan Aru	Medium	Dropline	93	1658
501	718	PP. Dobo	Kepulauan Aru	Medium	Gillnet	5	121
502	718	PP. Dobo	Kepulauan Aru	Medium	Longline	10	185
503	718	PP. Dobo	Kepulauan Aru	Nano	Dropline	11	30
504	718	PP. Dobo	Kepulauan Aru	Nano	Longline	8	23
505	718	PP. Dobo	Kepulauan Aru	Small	Dropline	7	56
506	718	PP. Dobo	Kepulauan Aru	Small	Longline	1	7
507	718	PP. Kaimana	Kepulauan Aru	Large	Longline	1	51
508	718	PP. Klidang Lor	Kepulauan Aru	Large	Gillnet	1	73
509	718	PP. Mayangan	Kepulauan Aru	Large	Longline	19	1405
510	718	PP. Merauke	Kepulauan Aru	Large	Longline	4	397
511	718	PP. Nizam Zachman	Kepulauan Aru	Large	Gillnet	1	92
512	718	PP. Pekalongan	Kepulauan Aru	Large	Gillnet	1	115
513	718	PU. Dobo	Kepulauan Aru	Large	Gillnet	3	285
514	718	PU. Dobo	Kepulauan Aru	Large	Longline	36	2670
515	718	Saumlaki	Kepulauan Tanimbar	Nano	Dropline	37	109
516	718	Saumlaki	Kepulauan Tanimbar Kepulauan Tanimbar	Small	Dropline	1	5
510 517	718	Saumlaki	Kepulauan Tanimbar Kepulauan Tanimbar	Small	Longline	5	$\frac{3}{37}$
518	718	PP. Bajomulyo	Merauke	Large	Gillnet	1	91
519	718	PP. Merauke	Merauke	Large	Gillnet	48	3873
520	718	PP. Merauke	Merauke	Large	Longline	2	213
520 521	718	PP. Merauke	Merauke	Medium	Gillnet	5	138
$521 \\ 522$	718	PP. Nizam Zachman	Merauke	Large	Gillnet	13	841
044	110	11. Nizani Zadiniali	MICIAUNE	Large	Ginnet	19	041

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano < 5 GT, Small 5-< 10 GT, Medium 10-30 GT, Large > 30 GT)

Row	WPP	Registration Port	Home District	Boat Size	Gear	N	Total GT
523	718	PP. Nizam Zachman	Merauke	Large	Longline	1	60
524	718	PP. Poumako	Merauke	Medium	Gillnet	3	88
525	718	PP. Tegal	Merauke	Large	Gillnet	1	148
526	718	PP. Bajomulyo	Mimika	Large	Longline	1	82
527	718	PP. Dobo	Mimika	Large	Gillnet	1	75
528	718	PP. Mayangan	Mimika	Large	Gillnet	1	129
529	718	PP. Merauke	Mimika	Large	Gillnet	2	123
530	718	PP. Merauke	Mimika	Medium	Gillnet	2	49
531	718	PP. Muara Angke	Mimika	Large	Gillnet	1	92
532	718	PP. Nizam Zachman	Mimika	Large	Gillnet	1	88
533	718	PP. Paumako	Mimika	Large	Gillnet	1	30
534	718	PP. Paumako	Mimika	Medium	Gillnet	2	58
535	718	PP. Pekalongan	Mimika	Large	Gillnet	1	112
536	718	PP. Pomako	Mimika	Medium	Gillnet	1	16
537	718	PP. Poumako	Mimika	Large	Gillnet	2	60
538	718	PP. Poumako	Mimika	Medium	Gillnet	12	284
539	718	PP. Poumako	Mimika	Small	Gillnet	3	28
540	718	Timika	Mimika	Medium	Longline	3	88
541	718	PP. Bajomulyo	Pati	Large	Longline	1	119
542	718	Bagansiapiapi	Probolinggo	Large	Longline	1	40
543	718	PP. Dobo	Probolinggo	Large	Longline	2	142
544	718	PP. Mayangan	Probolinggo	Large	Gillnet	3	124
545	718	PP. Mayangan	Probolinggo	Large	Longline	34	2103
546	718	PP. Mayangan	Probolinggo	Medium	Longline	7	199
547	718	Probolinggo	Probolinggo	Large	Longline	20	1460
548	718	PP. Lappa	Sinjai	Large	Dropline	1	35
549	718	PP. Lappa	Sinjai	Medium	Dropline	10	235
550	718	PP. Bajomulyo	Tual	Large	Longline	1	87
		TOTAL				11536	62678

2.5 I-Fish Community

I-Fish Community only stores data that are relevant to fisheries management, whereas data on processed volume and sales, from the Smart Weighing and Measuring System, remain on servers at processing companies. Access to the I-Fish Community database is controlled by user name and password. I-Fish Community has different layers of privacy, which is contingent on the user's role in the supply chain. For instance, boat owners may view exact location of their boats, but not of the boats of other owners.

I-Fish Community has an automatic length-frequency distribution reporting system for length-based assessment of the fishery by species. The database generates length frequency distribution graphs for each species, together with life history parameters including length at maturity (Lmat), optimum harvest size (Lopt: Beverton, 1992), asymptotic length (Linf), and maximum total length (Lmax). Procedures for estimation of these length based life history characteristics are explained in the "Guide to Length Based Stock Assessment" (Mous et al., 2020). The data base also includes size limits used in the trade. These "trade limit" lengths are derived from general buying behavior (minimal weight) of processing companies. The weights are converted into lengths by using species-specific length- weight relationships.

Each length frequency distribution is accompanied by an automated length-based assessment on current status of the fishery by species. Any I-Fish Community user can access these graphs and the conclusions from the assessments. The report produces an assessment for the 50 most abundant species in the fishery, based on complete catches from the most recent complete calendar year (to ensure full year data sets). Graphs for the Top 20 species show the position of the catch length frequency distributions relative to various life history parameter values and trading limits for each species. Relative abundance of specific size groups is plotted for all years for which data are available, to indicate trends in status by species.

Immature fish, small mature fish, large mature fish, and a subset of large mature fish, namely "mega-spawners", which are fish larger than 1.1 times the optimum harvest size (Froese 2004), make up the specific size groups used in our length based assessment. For all fish of each species in the catch, the percentage in each category is calculated for further use in the length based assessment. These percentages are calculated and presented as the first step in the length based assessment as follows: W% is immature (smaller than the length at maturity), X% is small matures (at or above size at maturity but smaller than the optimum harvest size), and Y% is large mature fish (at or above optimum harvest size). The percentage of mega-spawners is Z%.

The automated assessment comprises of five elements from the catch length frequencies. These elements all work with length based indicators of various kinds to draw conclusions from species specific length frequencies in the catch.

1. Minimum size as traded compared to length and maturity.

We use a comparison between the trade limit (minimum size accepted by the trade) and the size at maturity as an indicator for incentives from the trade for either unsustainable targeting of juveniles or for more sustainable targeting of mature fish that have spawned at least once. We consider a trade limit at 10% below or above the length at maturity to be significantly different from the length at maturity and we consider trade limits to provide incentives for targeting of specific sizes of fish through price differentiation.

IF "TradeLimit" is lower than 0.9 * L-mat THEN: "The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high."

ELSE, IF "TradeLimit" is greater than or equal to 0.9 * L-mat AND "TradeLimit" is lower than or equal to 1.1 * L-mat THEN: "The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium."

ELSE, IF "TradeLimit" is greater than 1.1 * L-mat THEN: "The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low."

2. Proportion of immature fish in the catch.

With 0% immature fish in the catch as an ideal target (Froese, 2004), a target of 10% or less is considered a reasonable indicator for sustainable (or safe) harvesting (Fujita et al., 2012; Vasilakopoulos et al., 2011). Zhang et al. (2009) consider 20% immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem based fisheries assessment. Results from meta-analysis over multiple fisheries showed stock status over a range of stocks to fall below precautionary limits at 30% or more immature fish in the catch (Vasilakopoulos et al., 2011). The fishery is considered highly at risk when more than 50% of the fish in the catch are immature (Froese et al, 2016).

IF "% immature" is lower than or equal to 10% THEN: "At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low."

ELSE, IF "% immature" is greater than 10% AND "% immature" is lower than or equal to 20% THEN: "Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium."

ELSE, IF "% immature" is greater than 20% AND "% immature" is lower than or equal to 30% THEN: "Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium."

ELSE, IF "% immature" is greater than 30% AND "% immature" is lower than or equal to 50% THEN: "Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high."

ELSE, IF "% immature" is greater than 50% THEN: "The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high."

3. Current exploitation level.

We use the current exploitation level expressed as the percentage of fish in the catch below the optimum harvest size as an indicator for fisheries status. We consider a proportion of 65% of the fish (i.e. the vast majority in numbers) in the catch below the optimum harvest size as an indicator for growth overfishing. We therefore consider a majority in the catch around or above the optimum harvest size (large matures) as an indicator for minimizing the impact of fishing (Froese et al., 2016). This indicator will be achieved when less than 50% of the fish in the catch are below the optimum harvest size.

IF "% immature + % small mature" is greater than or equal to 65% THEN: "The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high."

ELSE, IF "% immature + % small mature" is lower than or equal to 50% THEN: "The majority of the catch consists of size classes around or above the optimum harvest size (large mature fish). This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low."

ELSE, IF "% immature + % small mature" is greater than 50% AND "% immature + % small mature" is lower than 65% THEN: "The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium."

4. Proportion of mega spawners in the catch.

Mega spawners are fish larger than 1.1 times the optimum harvest size. We consider a proportion of 30% or more mega spawners in the catch to be a sign of a healthy population (Froese, 2004), whereas lower proportions are increasingly leading to concerns, with proportions below 20% indicating great risk to the fishery.

IF "% mega spawners" is greater than 30% THEN: "More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low."

ELSE, IF "% mega spawners" is greater than 20% AND "% mega spawners" is lower than or equal to 30% THEN: "The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium."

ELSE, IF "% mega spawners" is lower than or equal to 20%, THEN: "Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

5. Spawning Potential Ratio.

As an indicator for Spawning Potential Ratio (SPR, Quinn and Deriso, 1999), we used the estimated spawning stock biomass as a fraction of the spawning stock biomass of that population if it would have been pristine (Meester et al 2001). We calculated SPR on a per-recruit basis from life-history parameters M, F, K, and Linf, and from gear selectivity parameters in the smaller part of the size spectrum caught by the fishery.

We estimated the instantaneous total mortality (Z) from the equilibrium Beverton-Holt estimator from length data using Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq of the R Fishmethods package. For this estimation, we used the length range of the catch length-frequency distribution starting with the length 5% higher than the modal length and ending with the 99th percentile. We assumed that Z, and its constituents M and F, were constant over length range that we used to estimate Z. We calculated F (fishing mortality) as the difference between Z and M, assuming full selectivity for the size range starting at modal length and ending with the largest fish in the catch. We assumed an S-shaped (logistic) selectivity curve, with 99% selectivity achieved at modal length, and with the length at 50% selectivity halfway between the first percentile and modal length of the catch length-frequency distribution.

Gislason et al (2010) provides evidence that M increases with decreasing length, and fisheries scientists agree that the smaller size classes of each fish species experience higher mortality than larger fish due to higher predation risk. The method we used for calculating Z, however, assumes a Z that is constant, implicating a constant M, over the length range over which we estimated Z. To iron out this inconsistency, we applied the Gislason et al (2010) empirical relationship to the length classes (1 cm width) over which we estimated Z, we calculated the average M over these size classes, and we applied that average to the Z estimation range. Outside this range (i.e., at lengths below 1.05 times modal length and lengths above the 99th percentile), we assumed a varying M following Gislason's formula (Mous et al., 2020).

In a perfect world, fishery biologists would know what the appropriate SPR should be for every harvested stock based on the biology of that stock. Generally, however, not enough is known about managed stocks to be so precise. However, studies show that some stocks (depending on the species of fish) can maintain themselves if the spawning stock biomass per recruit can be kept at 20 to 35% (or more) of what it was in the un-fished stock. Lower values of SPR may lead to severe stock declines (Wallace and Fletcher, 2001). Froese et al. (2016) considered a total population biomass B of half the pristine population biomass Bo to be the lower limit reference point for stock size, minimizing the impact of fishing. Using SPR and B/Bo estimates from our own data set, this Froese et al. (2016) lower limit reference point correlates with an SPR of about 40%, not far from but slightly more conservative than the Wallace and Fletcher (2001) reference point. We chose an SPR of 40% as our reference point for low risk and after similar comparisons

we consider and SPR between 25% and 40% to represent a medium risk situation. Risk levels on the basis of SPR estimates are determined as follows:

IF "SPR" is lower than 25% THEN: "SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high."

ELSE, IF "SPR" is greater than or equal to 25% AND "SPR" is lower than 40% THEN: "SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium."

ELSE, IF "SPR" is greater than or equal to 40% THEN: "SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low."

3 Fishing grounds and traceability

The Timor Sea is arguably the most important snapper fishing ground in WPP 573 and fishing boats from far away are attracted to this area (Figures 3.1, 3.3 and 3.4). Several drop line and long line vessels have been observed repeatedly to illegally fish in Timor Leste waters (Figure 3.2). There is apparently little or no enforcement of fisheries regulations in Timor Leste waters and especially the Joint Petroleum Development Area or JPDA (an area in Timor Leste waters where a resource sharing agreement for seabed resources is in place with Australia) is still frequently targeted illegally by Indonesian vessels. SPOT trace data leave no doubt about this IUU issue in WPP 573.

The SPOT trace data from the Timor Sea drop line and long line fisheries also illustrate a classic "fishing the line" phenomenon (Figure 3.5 hingga 3.7) in the area of the Sahul Banks. Fishing vessels concentrate here right at the Indonesia - Australia border, on the edge of better managed fishing grounds on the Australian side, where fish densities are higher and where spill over effects can be expected. Additional fishing takes please near Rote Island and a few other locations on the boundary of the Savu and Timor Seas. Several drop line fishers were also observed to operate illegally in Australian waters and some of these have been arrested by Australian patrol boats in 2015.

Figure 3.1: A typical snapper fishing boat from Sapeken, Sumenep, Jawa Timur, operating from Kupang in the Timor Sea (WPP 573) and on nearby fishing grounds.

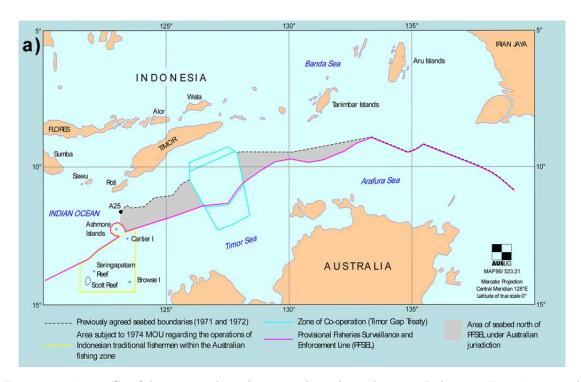


Figure 3.2: Timor Sea fishing grounds with current boundaries between Indonesia, East Timor and Australia.

- a) The dotted line is the Australia Indonesia Seabed Boundary. The pink line (PFSEL) is the Australia Indonesia Fisheries Boundary. Indonesian vessels are allowed to fish in the grey area between the pink line and the dotted line, but not below the PFSEL. The light blue line is the boundary of the East Timor Australia Zone of Cooperation which covers East Timorese fishing grounds where Indonesian fishing vessels are not allowed to fish. Australia does not enforce fisheries regulations here.
- b) The shaded area between the Seabed Boundary and the Fisheries Boundary is Australian seabed, where fishers from Indonesia are allowed to fish. The Australian - East Timor zone of cooperation or "Joint Petroleum Development Area" (JPDA) is not open to fishers from Indonesia. East

P Alar P Lakor

P Atauro

P Horita Melibot

Ponta Beaco

P Horita Melibot

P Atauro

P Horita Melibot

P Atauro

P Horita Melibot

P Atauro

P Horita De Lore

P Atauro

P Horita Melibot

P Horita De Lore

P Horita De Lore

P Horita Melibot

P Horita De Lore

P Horita Melibot

P Horita De Lore

P Horita Melibot

P Horita Melibot

P Horita De Lore

P Horita Melibot

P Horita De Lore

P Horita Melibot

P H

not open to fishers from Indonesia. East Timor is responsible for fishery surveillance within the JPDA.

Source: Australian Surveying & Land Information Group (AUSLIG) Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Figure 3.3: A typical snapper fishing boat used for drop line fishing from Benoa Denpasar, Bali, operating in the Timor Sea (WPP 573) and on nearby fishing grounds.

Figure 3.4: A typical snapper fishing boat used for long line fishing from Benoa Denpasar, Bali, operating in the Timor Sea (WPP 573) and on nearby fishing grounds.

Figure 3.5: Fishing positions of dropliners participating in the CODRS program over the years 2014 - 2019 in WPP 573, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

Figure 3.6: Fishing positions of longliners participating in the CODRS program over the years 2014 - 2019 in WPP 573, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

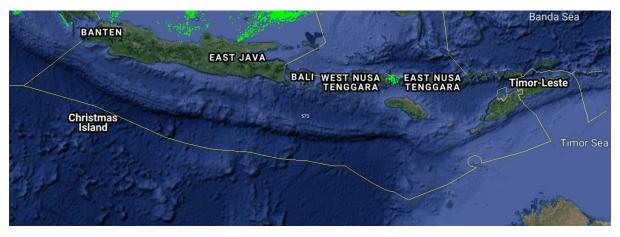
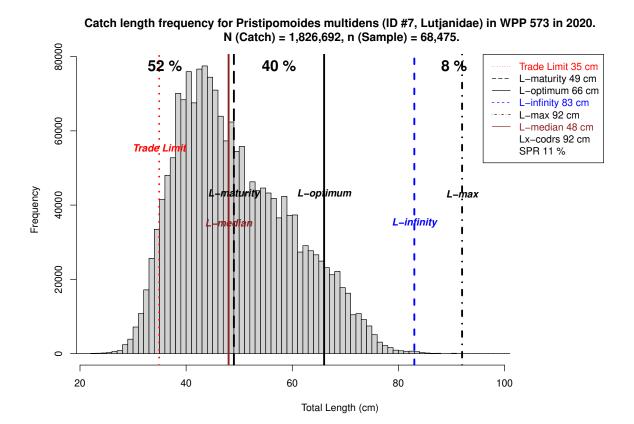
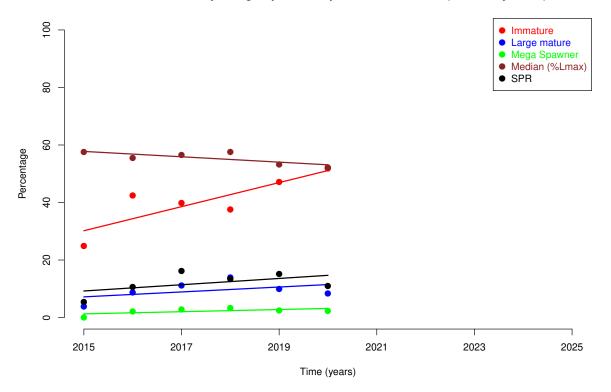




Figure 3.7: Fishing positions of vessels applying more than one gear, participating in the CODRS program over the years 2014 - 2019 in WPP 573, as reported by Spot Trace. Gears used by the vessels in this group are a combination of droplines, longlines, traps, and gillnets. Reported positions during steaming, anchoring, or docking are excluded from this map.

4 Length-based assessments of Top 20 most abundant species in CODRS samples

Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae) in WPP 573.

The percentages of Pristipomoides multidens (ID #7, Lutjanidae) in 2020.

N (Catch) = 1,826,692, n (Sample) = 68,475

Immature (< 49cm): 52%

Small mature (>= 49 cm, < 66 cm): 40%

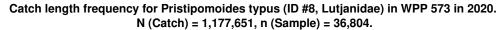
Large mature (>= 66cm): 8%

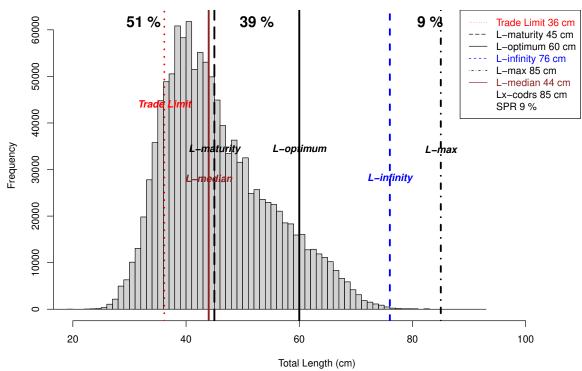
Mega spawner (≥ 72.6 cm): 2% (subset of large mature fish)

Spawning Potential Ratio: 11 %

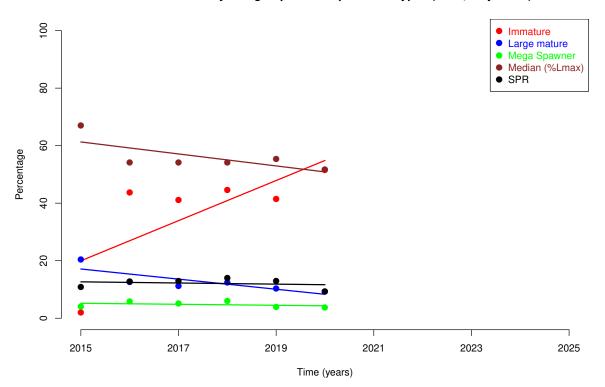
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.034
- % Large Mature rising over recent years, situation improving. P: 0.340
- % Mega Spawner rising over recent years, situation improving. P: 0.194
- % SPR rising over recent years, situation improving. P: 0.283

Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae) in WPP 573.


```
The percentages of Pristipomoides typus (ID #8, Lutjanidae) in 2020.
```

N (Catch) = 1,177,651, n (Sample) = 36,804

Immature (< 45cm): 51%

Small mature (>= 45cm, < 60cm): 39%

Large mature (>= 60cm): 9%

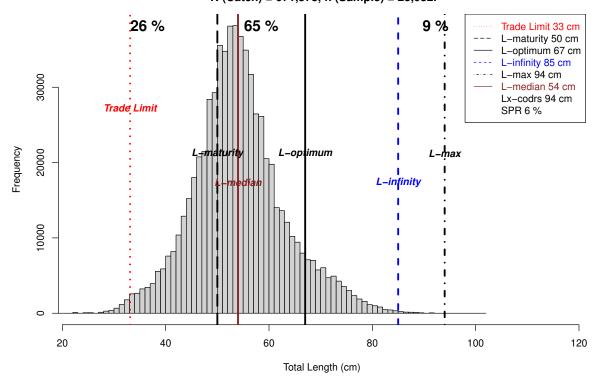
Mega spawner (>= 66cm): 4% (subset of large mature fish)

Spawning Potential Ratio: 9 %

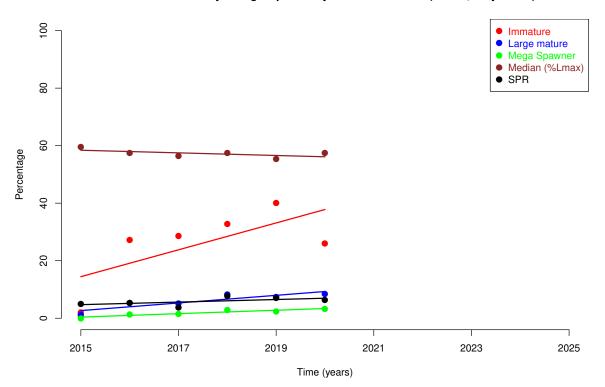
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.096
- % Large Mature falling over recent years, situation deteriorating. P: 0.045
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.516
- % SPR falling over recent years, situation deteriorating. P: 0.681

Catch length frequency for Lutjanus malabaricus (ID #17, Lutjanidae) in WPP 573 in 2020. N (Catch) = 671,378, n (Sample) = 23,032.

Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae) in WPP 573.

The percentages of Lutjanus malabaricus (ID #17, Lutjanidae) in 2020.

N (Catch) = 671,378, n (Sample) = 23,032

Immature (< 50cm): 26%

Small mature (>= 50 cm, < 67 cm): 65%

Large mature (>= 67cm): 9%

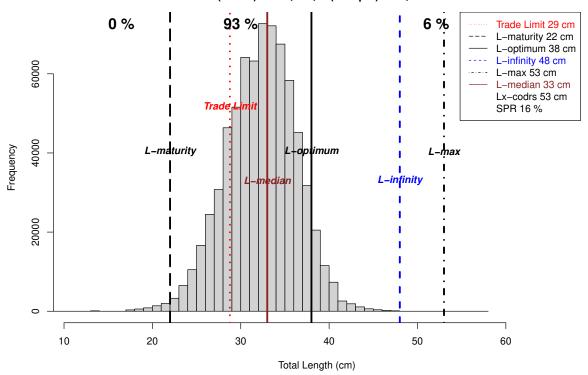
Mega spawner (≥ 73.7 cm): 3% (subset of large mature fish)

Spawning Potential Ratio: 6 %

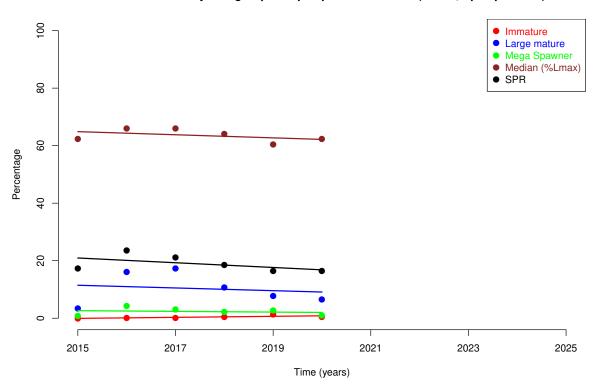
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.140
- % Large Mature rising over recent years, situation improving. P: 0.015
- % Mega Spawner rising over recent years, situation improving. P: 0.006
- % SPR rising over recent years, situation improving. P: 0.238

Catch length frequency for Epinephelus areolatus (ID #45, Epinephelidae) in WPP 573 in 2020. N (Catch) = 716,522, n (Sample) = 16,950.

Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae) in WPP 573

The percentages of Epinephelus areolatus (ID #45, Epinephelidae) in 2020.

N (Catch) = 716,522, n (Sample) = 16,950

Immature (< 22cm): 0%

Small mature (>= 22cm, < 38cm): 93%

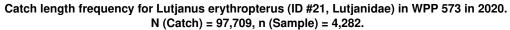
Large mature (>= 38cm): 6%

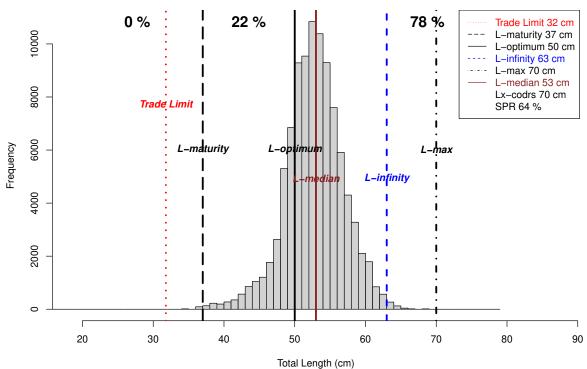
Mega spawner (≥ 41.8 cm): 1% (subset of large mature fish)

Spawning Potential Ratio: 16 %

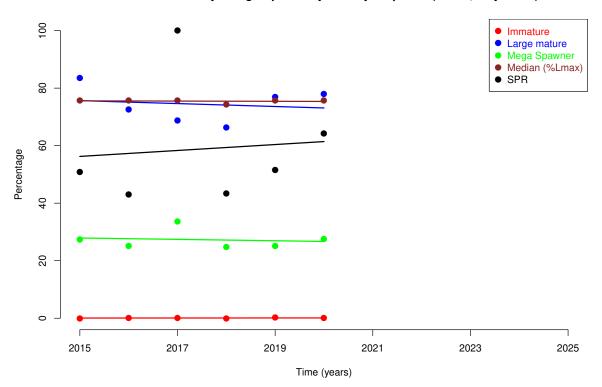
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.137
- % Large Mature falling over recent years, situation deteriorating. P: 0.763
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.739
- % SPR falling over recent years, situation deteriorating. P: 0.281

Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae) in WPP 573.

The percentages of Lutjanus erythropterus (ID #21, Lutjanidae) in 2020.

N (Catch) = 97,709, n (Sample) = 4,282

Immature (< 37cm): 0%

Small mature (>= 37cm, < 50cm): 22%

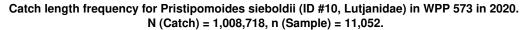
Large mature (>= 50cm): 78%

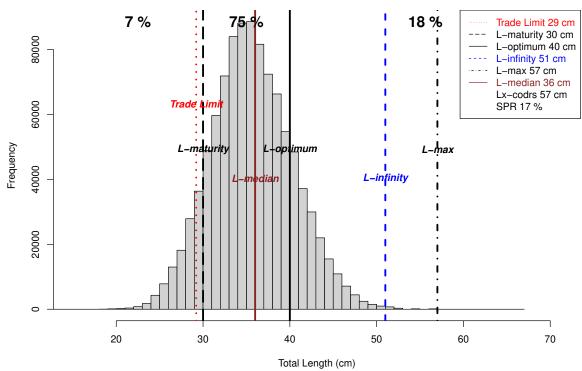
Mega spawner (>= 55cm): 27% (subset of large mature fish)

Spawning Potential Ratio: 64 %

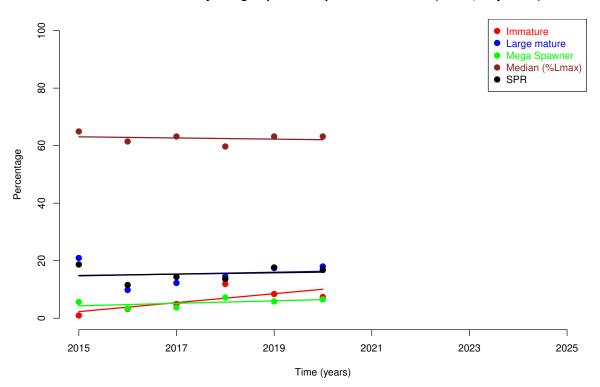
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.


Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature no trend over recent years, situation stable. P: 0.795
- % Large Mature falling over recent years, situation deteriorating. P: 0.777
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.801
- % SPR rising over recent years, situation improving. P: 0.866

Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae) in WPP 573.

The percentages of Pristipomoides sieboldii (ID #10, Lutjanidae) in 2020.

N (Catch) = 1,008,718, n (Sample) = 11,052

Immature (< 30cm): 7%

Small mature (>= 30 cm, < 40 cm): 75%

Large mature (>= 40cm): 18%

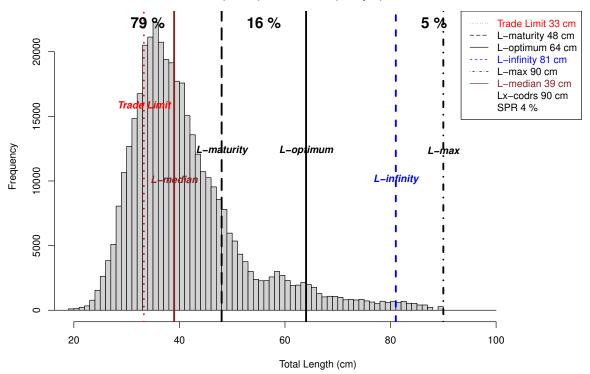
Mega spawner (>= 44cm): 7% (subset of large mature fish)

Spawning Potential Ratio: 17 %

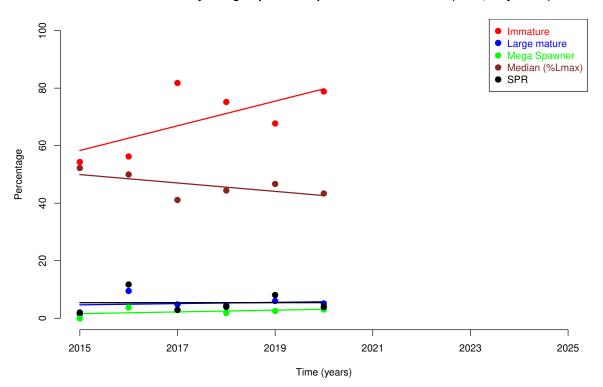
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.091
- % Large Mature rising over recent years, situation improving. P: 0.783
- % Mega Spawner rising over recent years, situation improving. P: 0.289
- % SPR rising over recent years, situation improving. P: 0.764

Catch length frequency for Pristipomoides filamentosus (ID #9, Lutjanidae) in WPP 573 in 2020. N (Catch) = 389,662, n (Sample) = 5,516.

Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae) in WPP 57

The percentages of Pristipomoides filamentosus (ID #9, Lutjanidae) in 2020.

N (Catch) = 389,662, n (Sample) = 5,516

Immature (< 48cm): 79%

Small mature (>= 48cm, < 64cm): 16%

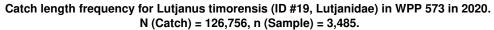
Large mature (>= 64cm): 5%

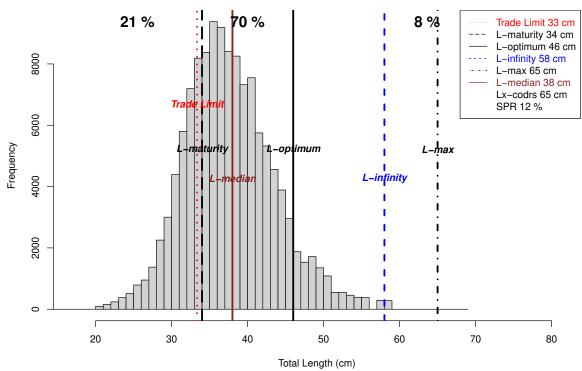
Mega spawner (≥ 70.4 cm): 3% (subset of large mature fish)

Spawning Potential Ratio: 4 %

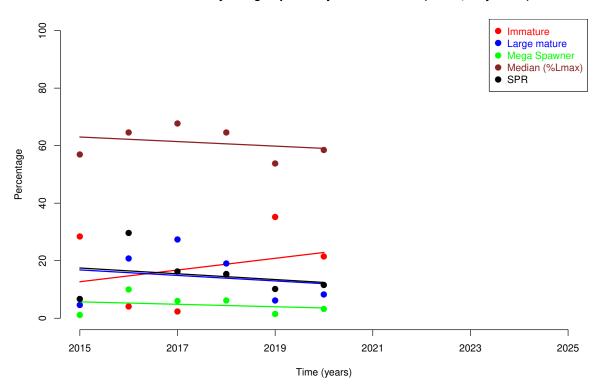
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.129
- % Large Mature rising over recent years, situation improving. P: 0.769
- % Mega Spawner rising over recent years, situation improving. P: 0.382
- % SPR no trend over recent years, situation stable. P: 0.997

Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae) in WPP 573.

The percentages of Lutjanus timorensis (ID #19, Lutjanidae) in 2020.

N (Catch) = 126,756, n (Sample) = 3,485

Immature (< 34cm): 21%

Small mature (>= 34cm, < 46cm): 70%

Large mature (>= 46cm): 8%

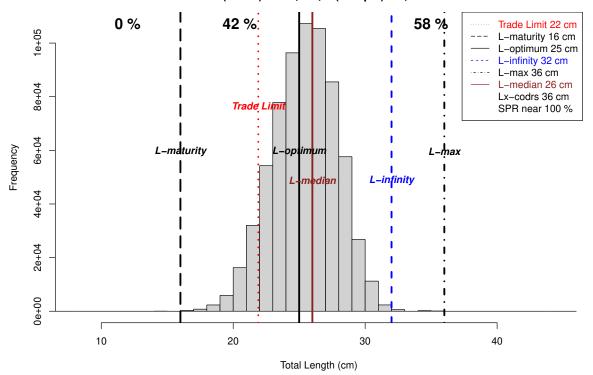
Mega spawner (>= 50.6cm): 3% (subset of large mature fish)

Spawning Potential Ratio: 12 %

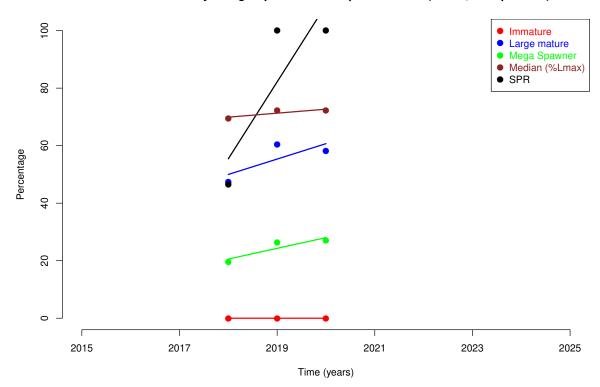
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.576
- % Large Mature falling over recent years, situation deteriorating. P: 0.714
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.655
- % SPR falling over recent years, situation deteriorating. P: 0.654

Catch length frequency for Parascolopsis eriomma (ID #96, Nemipteridae) in WPP 573 in 2020. N (Catch) = 683,082, n (Sample) = 7,515.

Trends in relative abundance by size group for Parascolopsis eriomma (ID #96, Nemipteridae) in WPP 573

The percentages of Parascolopsis eriomma (ID #96, Nemipteridae) in 2020.

N (Catch) = 683,082, n (Sample) = 7,515

Immature (< 16cm): 0%

Small mature (>= 16 cm, < 25 cm): 42%

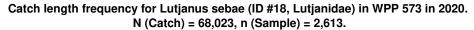
Large mature (>= 25cm): 58%

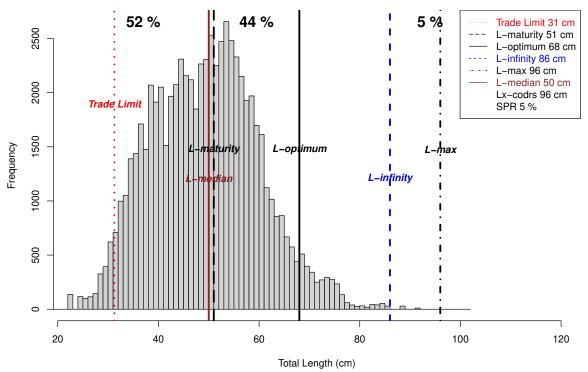
Mega spawner (≥ 27.5 cm): 27% (subset of large mature fish)

Spawning Potential Ratio: near 100 %

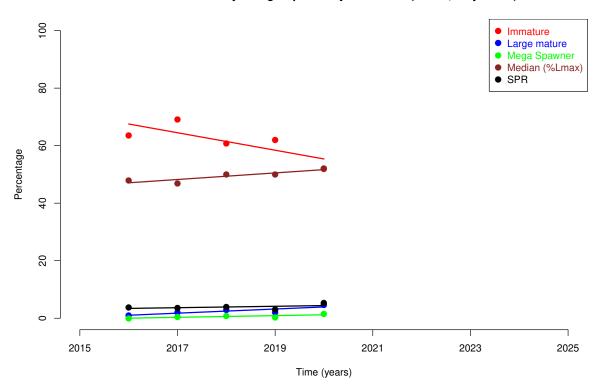
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.


Trends in relative abundance by size group for Parascolopsis eriomma (ID #96, Nemipteridae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature no trend over recent years, situation stable. P: 0.333
- % Large Mature rising over recent years, situation improving. P: 0.441
- % Mega Spawner rising over recent years, situation improving. P: 0.284
- % SPR rising over recent years, situation improving. P: 0.333

Trends in relative abundance by size group for Lutjanus sebae (ID #18, Lutjanidae) in WPP 573.


```
The percentages of Lutjanus sebae (ID #18, Lutjanidae) in 2020.
```

N (Catch) = 68,023, n (Sample) = 2,613

Immature (< 51cm): 52%

Small mature (>= 51cm, < 68cm): 44%

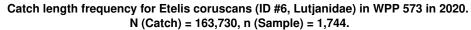
Large mature (>= 68cm): 5%

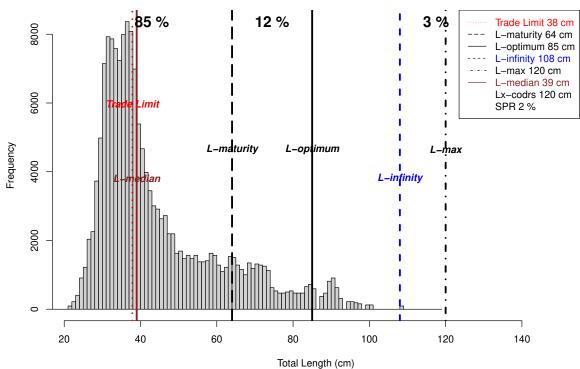
Mega spawner (≥ 74.8 cm): 2% (subset of large mature fish)

Spawning Potential Ratio: 5 %

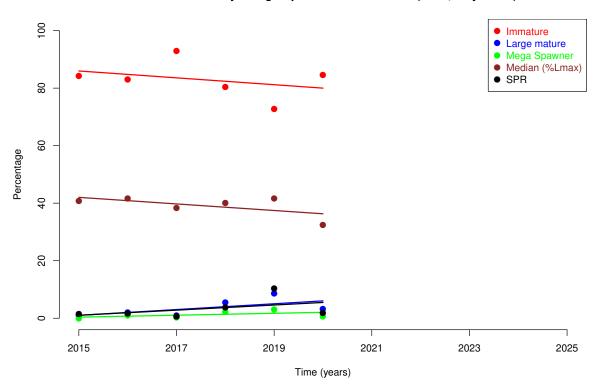
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Lutjanus sebae (ID #18, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

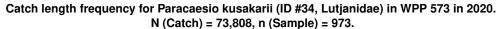
- % Immature falling over recent years, situation improving. P: 0.124
- % Large Mature rising over recent years, situation improving. P: 0.070
- % Mega Spawner rising over recent years, situation improving. P: 0.104
- % SPR rising over recent years, situation improving. P: 0.405

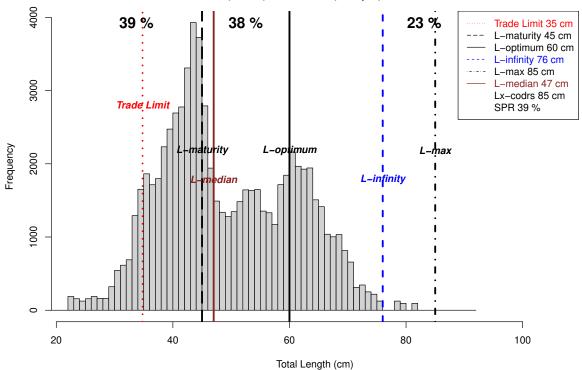
Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae) in WPP 573.


```
The percentages of Etelis coruscans (ID #6, Lutjanidae) in 2020. N (Catch) =163,730, n (Sample) = 1,744 Immature (< 64cm): 85\% Small mature (>= 64cm, < 85cm): 12\% Large mature (>= 85cm): 3\% Mega spawner (>= 93.5cm): 1\% (subset of large mature fish) Spawning Potential Ratio: 2\%
```

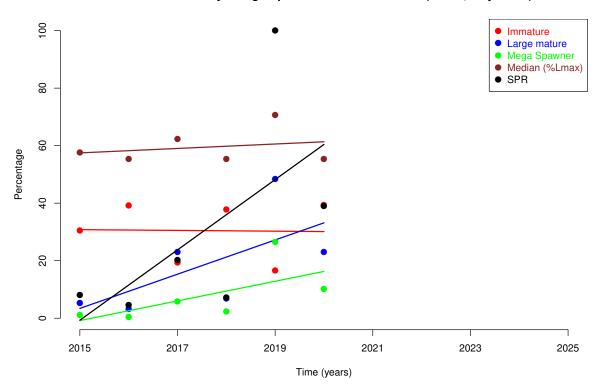
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature falling over recent years, situation improving. P: 0.512
- % Large Mature rising over recent years, situation improving. P: 0.179
- % Mega Spawner rising over recent years, situation improving. P: 0.296
- % SPR rising over recent years, situation improving. P: 0.359

Trends in relative abundance by size group for Paracaesio kusakarii (ID #34, Lutjanidae) in WPP 573.


```
The percentages of Paracaesio kusakarii (ID #34, Lutjanidae) in 2020.
```

N (Catch) = 73,808, n (Sample) = 973

Immature (< 45cm): 39%

Small mature (>= 45cm, < 60cm): 38%

Large mature (>= 60cm): 23%

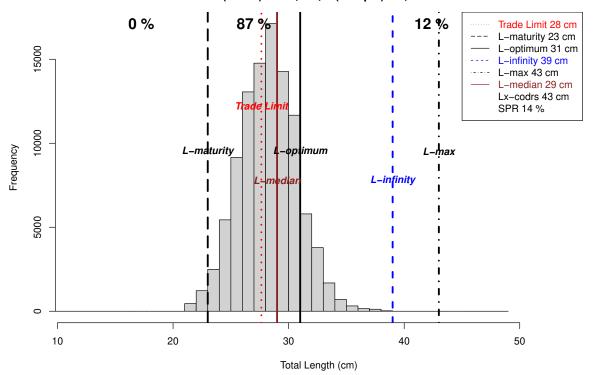
Mega spawner (>= 66cm): 10% (subset of large mature fish)

Spawning Potential Ratio: 39 %

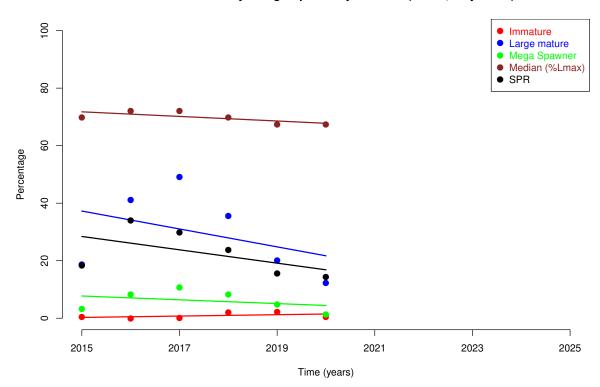
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.


Trends in relative abundance by size group for Paracaesio kusakarii (ID #34, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature falling over recent years, situation improving. P: 0.963
- % Large Mature rising over recent years, situation improving. P: 0.164
- % Mega Spawner rising over recent years, situation improving. P: 0.164
- % SPR rising over recent years, situation improving. P: 0.186

Catch length frequency for Lutjanus vitta (ID #27, Lutjanidae) in WPP 573 in 2020. N (Catch) = 102,233, n (Sample) = 2,595.

Trends in relative abundance by size group for Lutjanus vitta (ID #27, Lutjanidae) in WPP 573.


```
The percentages of Lutjanus vitta (ID #27, Lutjanidae) in 2020.
```

N (Catch) = 102,233, n (Sample) = 2,595

Immature (< 23cm): 0%

Small mature (>= 23cm, < 31cm): 87%

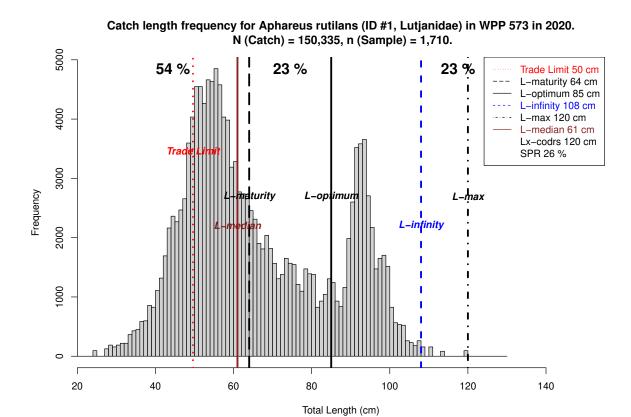
Large mature (>= 31cm): 12%

Mega spawner (≥ 34.1 cm): 1% (subset of large mature fish)

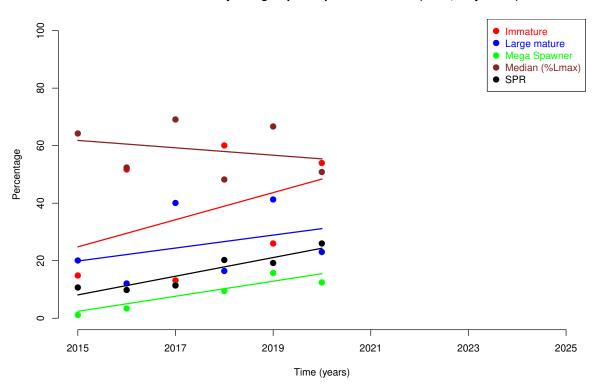
Spawning Potential Ratio: 14 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus vitta (ID #27, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.366
- % Large Mature falling over recent years, situation deteriorating. P: 0.432
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.499
- % SPR falling over recent years, situation deteriorating. P: 0.266

The percentages of Aphareus rutilans (ID #1, Lutjanidae) in 2020.

N (Catch) = 150,335, n (Sample) = 1,710

Immature (< 64cm): 54%

Small mature (>= 64 cm, < 85 cm): 23%

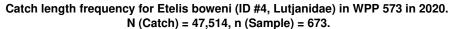
Large mature (>= 85cm): 23%

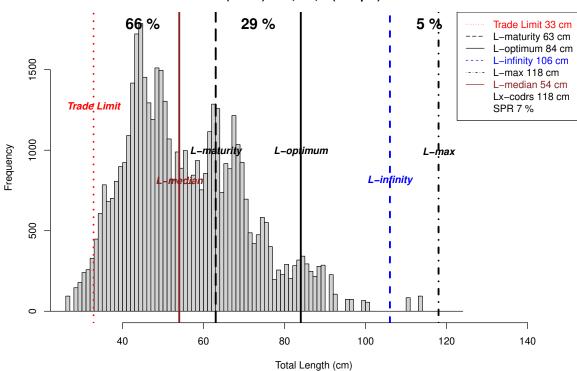
Mega spawner (>= 93.5cm): 12% (subset of large mature fish)

Spawning Potential Ratio: 26 %

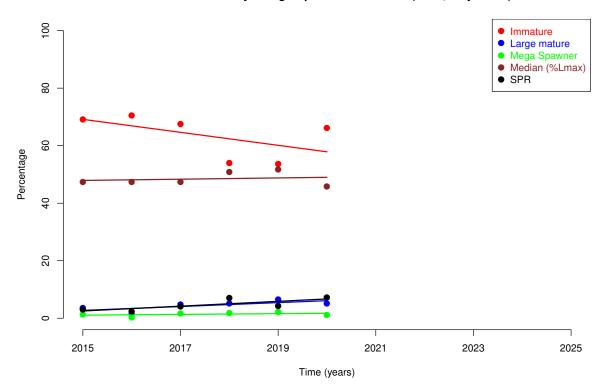
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.


Trends in relative abundance by size group for Aphareus rutilans (ID #1, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.408
- % Large Mature rising over recent years, situation improving. P: 0.508
- % Mega Spawner rising over recent years, situation improving. P: 0.023
- % SPR rising over recent years, situation improving. P: 0.009

Trends in relative abundance by size group for Etelis boweni (ID #4, Lutjanidae) in WPP 573.


```
The percentages of Etelis boweni (ID #4, Lutjanidae) in 2020.
```

N (Catch) = 47,514, n (Sample) = 673

Immature (< 63cm): 66%

Small mature (>= 63cm, < 84cm): 29%

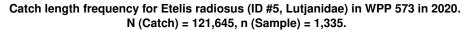
Large mature (>= 84cm): 5%

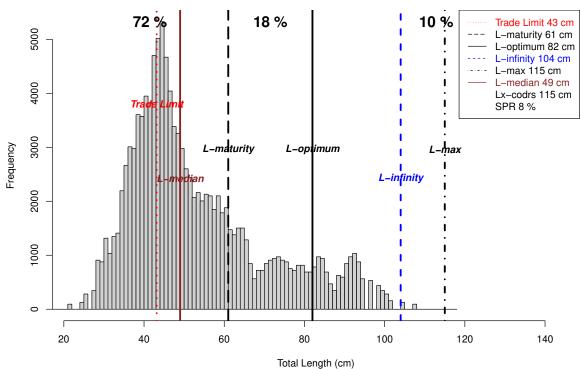
Mega spawner (≥ 92.4 cm): 1% (subset of large mature fish)

Spawning Potential Ratio: 7 %

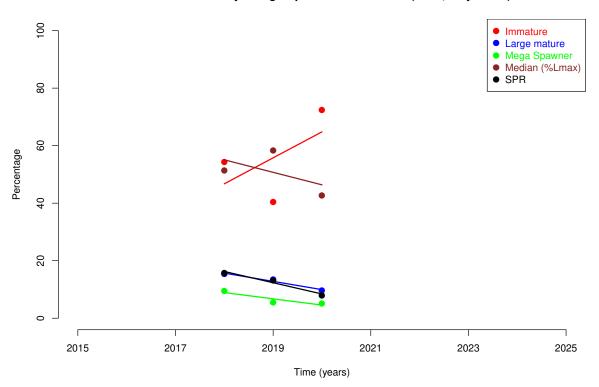
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis boweni (ID #4, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature falling over recent years, situation improving. P: 0.254
- % Large Mature rising over recent years, situation improving. P: 0.102
- % Mega Spawner rising over recent years, situation improving. P: 0.454
- % SPR rising over recent years, situation improving. P: 0.072

Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae) in WPP 573.


```
The percentages of Etelis radiosus (ID \#5, Lutjanidae) in 2020.
```

N (Catch) = 121,645, n (Sample) = 1,335

Immature (< 61cm): 72%

Small mature (>= 61 cm, < 82 cm): 18%

Large mature (>= 82cm): 10%

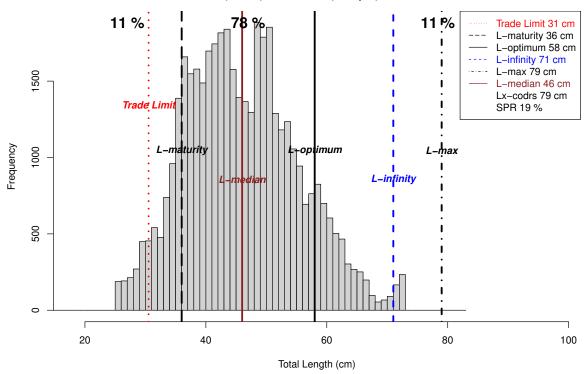
Mega spawner (>= 90.2cm): 5% (subset of large mature fish)

Spawning Potential Ratio: 8 %

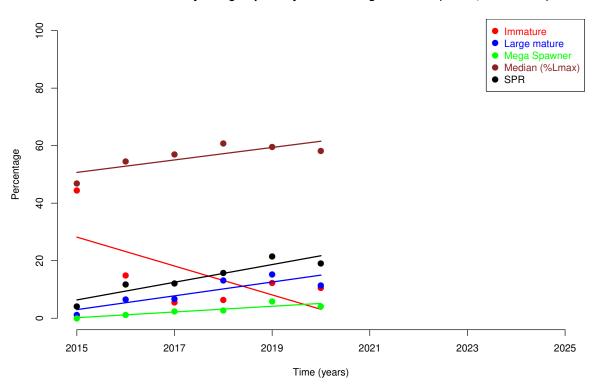
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.620
- % Large Mature falling over recent years, situation deteriorating. P: 0.125
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.279
- % SPR falling over recent years, situation deteriorating. P: 0.119

Catch length frequency for Gymnocranius grandoculis (ID #70, Lethrinidae) in WPP 573 in 2020. N (Catch) = 42,386, n (Sample) = 1,211.

Trends in relative abundance by size group for Gymnocranius grandoculis (ID #70, Lethrinidae) in WPP 57

The percentages of Gymnocranius grandoculis (ID #70, Lethrinidae) in 2020.

N (Catch) = 42,386, n (Sample) = 1,211

Immature (< 36cm): 11%

Small mature (>= 36 cm, < 58 cm): 78%

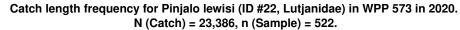
Large mature (>= 58cm): 11%

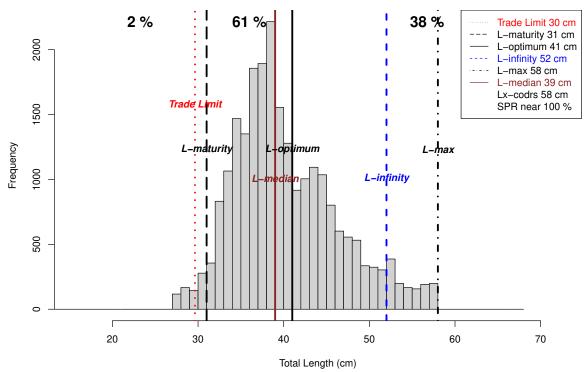
Mega spawner (≥ 63.8 cm): 4% (subset of large mature fish)

Spawning Potential Ratio: 19 %

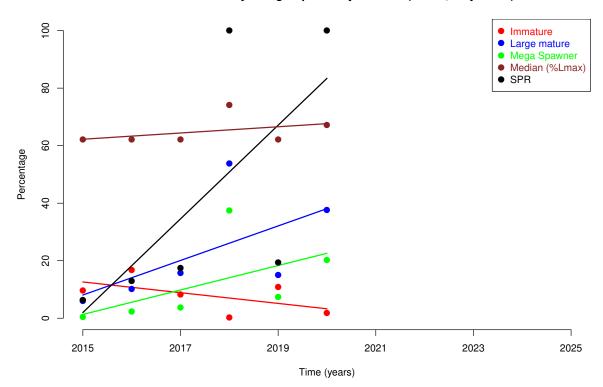
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.


The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Gymnocranius grandoculis (ID #70, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature falling over recent years, situation improving. P: 0.165
- % Large Mature rising over recent years, situation improving. P: 0.026
- % Mega Spawner rising over recent years, situation improving. P: 0.014
- % SPR rising over recent years, situation improving. P: 0.007

Trends in relative abundance by size group for Pinjalo lewisi (ID #22, Lutjanidae) in WPP 573.

The percentages of Pinjalo lewisi (ID #22, Lutjanidae) in 2020.

N (Catch) = 23,386, n (Sample) = 522

Immature (< 31cm): 2%

Small mature (>= 31cm, < 41cm): 61%

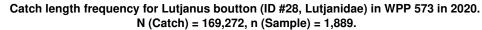
Large mature (>= 41cm): 38%

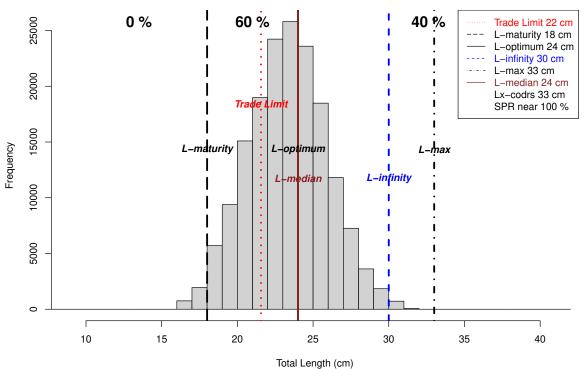
Mega spawner (>= 45.1cm): 20% (subset of large mature fish)

Spawning Potential Ratio: near 100 %

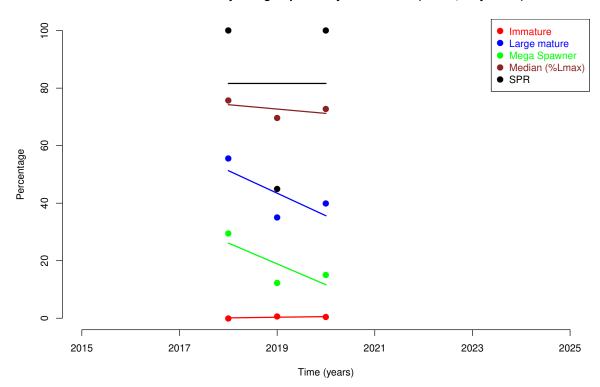
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium.


The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.


Trends in relative abundance by size group for Pinjalo lewisi (ID #22, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature falling over recent years, situation improving. P: 0.237
- % Large Mature rising over recent years, situation improving. P: 0.204
- % Mega Spawner rising over recent years, situation improving. P: 0.256
- % SPR rising over recent years, situation improving. P: 0.135

Trends in relative abundance by size group for Lutjanus boutton (ID #28, Lutjanidae) in WPP 573.

The percentages of Lutjanus boutton (ID #28, Lutjanidae) in 2020.

N (Catch) = 169,272, n (Sample) = 1,889

Immature (< 18cm): 0%

Small mature (>= 18cm, < 24cm): 60%

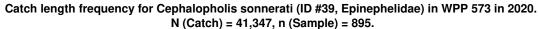
Large mature (>= 24cm): 40%

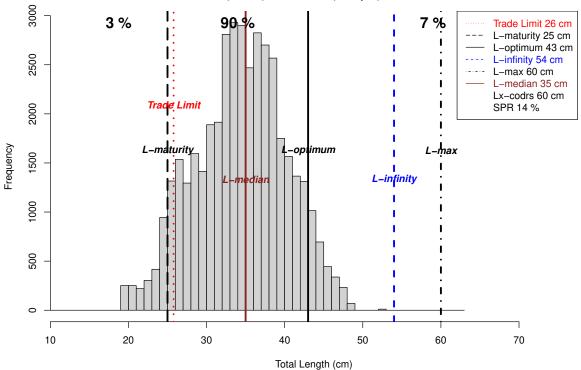
Mega spawner (≥ 26.4 cm): 15% (subset of large mature fish)

Spawning Potential Ratio: near 100 %

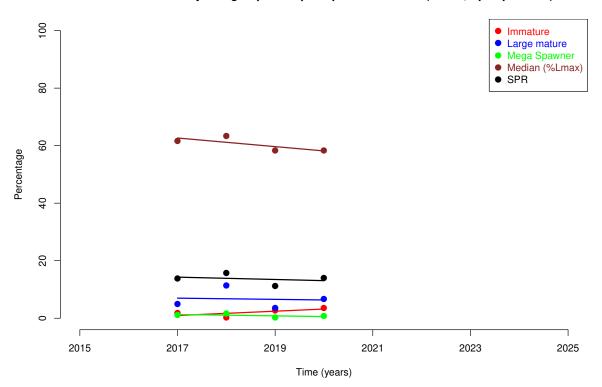
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.


The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium.


Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.


Trends in relative abundance by size group for Lutjanus boutton (ID #28, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.462
- % Large Mature falling over recent years, situation deteriorating. P: 0.475
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.427
- % SPR no trend over recent years, situation stable. P: 1.000

Trends in relative abundance by size group for Cephalopholis sonnerati (ID #39, Epinephelidae) in WPP 57


```
The percentages of Cephalopholis sonnerati (ID #39, Epinephelidae) in 2020.
```

N (Catch) = 41,347, n (Sample) = 895

Immature (< 25cm): 3%

Small mature (>= 25cm, < 43cm): 90%

Large mature (>= 43cm): 7%

Mega spawner (≥ 47.3 cm): 1% (subset of large mature fish)

Spawning Potential Ratio: 14 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Cephalopholis sonnerati (ID #39, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

- % Immature rising over recent years, situation deteriorating. P: 0.283
- % Large Mature falling over recent years, situation deteriorating. P: 0.919
- % Mega Spawner falling over recent years, situation deteriorating. P: 0.444
- % SPR falling over recent years, situation deteriorating. P: 0.719

Table 4.1: Values of indicators in length-based assessments for the top 50 most abundant species by total CODRS samples in WPP 573 in 2020.

Rank	#ID	Species	Trade Limit Prop. Lmat	Immature %	Exploitation %	Mega Spawn %	SPR %
1	7	Pristipomoides multidens	0.71	52	92	2	11
2	8	Pristipomoides typus	0.80	51	91	4	9
3	17	Lutjanus malabaricus	0.66	26	91	3	6
4	45	Epinephelus areolatus	1.31	0	94	1	16
5	21	Lutjanus erythropterus	0.86	0	22	27	64
6	10	Pristipomoides sieboldii	0.97	7	82	7	17
7	9	Pristipomoides filamentosus	0.69	79	95	3	4
8	19	Lutjanus timorensis	0.98	21	92	3	12
9	96	Parascolopsis eriomma	1.37	0	42	27	near 100
10	18	Lutjanus sebae	0.61	52	95	2	5
11	6	Etelis coruscans	0.59	85	97	1	$\overset{\circ}{2}$
12	34	Paracaesio kusakarii	0.77	39	77	10	39
13	27	Lutjanus vitta	1.20	0	88	1	14
14	1	Aphareus rutilans	0.78	54	77	12	26
15	4	Etelis boweni	0.52	66	95	1	7
16	5	Etelis radiosus	0.71	72	90	5	8
17	70	Gymnocranius grandoculis	0.85	11	89	4	19
18	22	Pinjalo lewisi	0.96	2	62	20	near 100
19	28	Lutjanus boutton	1.20	0	60	15	near 100
20	39	Cephalopholis sonnerati	1.03	3	93	1	14
$\frac{-3}{21}$	43	Epinephelus morrhua	0.83	6	98	0	10
22	88	Glaucosoma buergeri	0.95	1	41	37	near 100
23	33	Paracaesio xanthura	0.98	1	33	39	near 100
$\frac{1}{24}$	46	Epinephelus bleekeri	0.83	1	93	2	13
25	69	Wattsia mossambica	1.09	27	97	1	11
26	84	Seriola rivoliana	1.00	18	34	50	12
$\frac{20}{27}$	71	Gymnocranius griseus	1.53	1	89	3	15
28	32	Paracaesio gonzalesi	0.86	1	46	25	40
29	20	Lutjanus gibbus	1.07	10	75	16	65
30	41	Epinephelus latifasciatus	1.00	2	81	6	20
31	75	Carangoides chrysophrys	1.17	1	27	57	39
32	52	Epinephelus retouti	1.41	0	66	17	49
33	37	Cephalopholis miniata	1.46	1	77	8	32
34	16	Lutjanus bohar	0.67	26	55	27	near 100
35	15	Lutjanus argentimaculatus	0.62	11	55	23	68
36	63	Lethrinus lentjan	1.05	3	79	10	39
37	35	Paracaesio stonei	1.00	unknown	unknown	unknown	unknown
38	86	Argyrops spinifer	1.16	6	77	7	19
39	92	Cookeolus japonicus	0.99	0	38	40	near 100
40	85	Erythrocles schlegelii	1.28	29	82	13	24
41	51	Epinephelus chlorostigma	1.20	unknown	unknown	unknown	unknown
43	67	Lethrinus amboinensis	1.08	2	70	16	65
44	58	Epinephelus amblycephalus	1.31	0	84	4	23
45	81	Caranx tille	1.38	$\frac{\sigma}{2}$	76	22	37
46	62	Variola albimarginata	1.38	1	82	9	27
48	80	Caranx sexfasciatus	1.24	12	24	73	33
49	72	Carangoides coeruleopinnatus		unknown	unknown	unknown	unknown
50	90	Diagramma pictum	1.02	1	77	2	18

Table 4.2: Risk levels in the fisheries for the top 50 most abundant species by total CODRS samples in WPP 573 in 2020.

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
1	7	Pristipomoides multidens	high	high	high	high	high
2	8	Pristipomoides typus	high	high	high	high	high
3	17	Lutjanus malabaricus	high	medium	high	high	high
4	45	Epinephelus areolatus	low	low	high	high	high
5	21	Lutjanus erythropterus	high	low	low	medium	low
6	10	Pristipomoides sieboldii	\mathbf{medium}	low	high	high	high
7	9	Pristipomoides filamentosus	high	high	high	high	high
8	19	Lutjanus timorensis	medium	medium	high	high	high
9	96	Parascolopsis eriomma	low	low	low	medium	low
10	18	Lutjanus sebae	high	high	high	high	high
11	6	Etelis coruscans	high	high	high	high	high
12	34	Paracaesio kusakarii	high	high	high	high	medium
13	27	Lutjanus vitta	low	low	high	high	high
14	1	Aphareus rutilans	high	high	high	high	medium
15	4	Etelis boweni	high	high	high	high	high
16	5	Etelis radiosus	high	high	high	high	high
17	70	Gymnocranius grandoculis	high	medium	high	high	high
18	22	Pinjalo lewisi	medium	low	medium	medium	low
19	28	Lutjanus boutton	low	low	\mathbf{medium}	high	low
20	39	Cephalopholis sonnerati	medium	low	high	high	high
21	43	Epinephelus morrhua	high	low	high	high	high
22	88	Glaucosoma buergeri	medium	low	low	low	low
23	33	Paracaesio xanthura	\mathbf{medium}	low	low	low	low
24	46	Epinephelus bleekeri	high	low	high	high	high
25	69	Wattsia mossambica	medium	medium	high	high	high
26	84	Seriola rivoliana	\mathbf{medium}	medium	low	low	high
27	71	Gymnocranius griseus	low	low	high	high	high
28	32	Paracaesio gonzalesi	high	low	low	medium	medium
29	20	Lutjanus gibbus	medium	medium	high	high	low
30	41	Epinephelus latifasciatus	\mathbf{medium}	low	high	high	high
31	75	Carangoides chrysophrys	low	low	low	low	medium
32	52	Epinephelus retouti	low	low	high	high	low
33	37	Cephalopholis miniata	low	low	high	high	medium
34	16	Lutjanus bohar	high	\mathbf{medium}	medium	medium	low
35	15	Lutjanus argentimaculatus	high	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	low
36	63	Lethrinus lentjan	medium	low	high	high	medium
37	35	Paracaesio stonei	unknown	unknown	unknown	unknown	unknown
38	86	Argyrops spinifer	low	low	high	high	high
39	92	Cookeolus japonicus	\mathbf{medium}	low	low	low	low
40	85	Erythrocles schlegelii	low	\mathbf{medium}	high	high	high
41	51	Epinephelus chlorostigma	unknown	unknown	unknown	unknown	unknown
43	67	Lethrinus amboinensis	\mathbf{medium}	low	high	high	low
44	58	Epinephelus amblycephalus	low	low	high	high	high
45	81	Caranx tille	low	low	high	medium	medium
46	62	Variola albimarginata	low	low	high	high	medium
48	80	Caranx sexfasciatus	low	\mathbf{medium}	low	low	\mathbf{medium}
49	72	Carangoides coeruleopinnatus	unknown	unknown	unknown	unknown	unknown
50	90	Diagramma pictum	\mathbf{medium}	low	high	high	high

Table 4.3: Trends during recent years for SPR and relative abundance by size group for the top 50 most abundant species by total CODRS samples in WPP 573.

Rank	#ID	Species	% Immature	% Large Mature	% Mega Spawner	% SPR
1	7	Pristipomoides multidens	deteriorating	improving	improving	improving
$\overline{2}$	8	Pristipomoides typus	deteriorating	deteriorating	deteriorating	deteriorating
3	17	Lutjanus malabaricus	deteriorating	improving	improving	improving
4	45	Epinephelus areolatus	deteriorating	deteriorating	deteriorating	deteriorating
5	21	Lutjanus erythropterus	stable	deteriorating	deteriorating	improving
6	10	Pristipomoides sieboldii	deteriorating	improving	improving	improving
7	9	Pristipomoides filamentosus	deteriorating	improving	improving	stable
8	19	Lutjanus timorensis	deteriorating	deteriorating	deteriorating	deteriorating
9	96	Parascolopsis eriomma	stable	improving	improving	improving
10	18	Lutjanus sebae	improving	improving	improving	improving
11	6	Etelis coruscans	improving	improving	improving	improving
12	34	Paracaesio kusakarii	improving	improving	improving	improving
13	27	Lutjanus vitta	deteriorating	deteriorating	deteriorating	deteriorating
14	1	Aphareus rutilans	deteriorating	improving	improving	improving
15	4	Etelis boweni	improving	improving	improving	improving
16	5	Etelis radiosus	deteriorating	deteriorating	deteriorating	deteriorating
17	70	Gymnocranius grandoculis	improving	improving	improving	improving
18	22	Pinjalo lewisi	improving	improving	improving	improving
19	28	Lutjanus boutton	deteriorating	deteriorating	deteriorating	stable
20	39	Cephalopholis sonnerati	deteriorating	deteriorating	deteriorating	deteriorating
21	43	Epinephelus morrhua	improving	improving	stable	improving
22	88	Glaucosoma buergeri	improving	improving	improving	improving
23	33	Paracaesio xanthura	unknown	unknown	unknown	unknown
24	46	Epinephelus bleekeri	\mathbf{stable}	deteriorating	deteriorating	deteriorating
25	69	Wattsia mossambica	deteriorating	stable	improving	stable
26	84	Seriola rivoliana	deteriorating	improving	improving	deteriorating
27	71	Gymnocranius griseus	deteriorating	deteriorating	${f stable}$	deteriorating
28	32	Paracaesio gonzalesi	deteriorating	improving	improving	improving
29	20	Lutjanus gibbus	unknown	unknown	unknown	unknown
30	41	Epinephelus latifasciatus	improving	deteriorating	deteriorating	deteriorating
31	75	Carangoides chrysophrys	deteriorating	deteriorating	deteriorating	deteriorating
32	52	Epinephelus retouti	improving	improving	improving	improving
33	37	Cephalopholis miniata	unknown	unknown	unknown	${\bf unknown}$
34	16	Lutjanus bohar	unknown	unknown	unknown	${\bf unknown}$
35	15	Lutjanus argentimaculatus	deteriorating	improving	improving	improving
36	63	Lethrinus lentjan	unknown	unknown	unknown	${\bf unknown}$
37	35	Paracaesio stonei	unknown	unknown	${\bf unknown}$	${\bf unknown}$
38	86	Argyrops spinifer	unknown	unknown	unknown	unknown
39	92	Cookeolus japonicus	unknown	unknown	${\bf unknown}$	unknown
40	85	Erythrocles schlegelii	unknown	unknown	${\bf unknown}$	unknown
41	51	Epinephelus chlorostigma	unknown	unknown	${\bf unknown}$	unknown
43	67	Lethrinus amboinensis	unknown	unknown	unknown	unknown
44	58	Epinephelus amblycephalus	unknown	unknown	unknown	unknown
45	81	Caranx tille	unknown	unknown	${\bf unknown}$	unknown
46	62	Variola albimarginata	unknown	unknown	${\bf unknown}$	unknown
48	80	Caranx sexfasciatus	unknown	unknown	unknown	unknown
49	72	${\bf Carangoides\ coerule opinnatus}$	unknown	unknown	unknown	${\bf unknown}$
50	90	Diagramma pictum	unknown	unknown	unknown	unknown

5 Discussion and conclusions

The deep water long line and drop line fisheries for snappers, groupers and emperors in WPP 573 are fairly "clean" fisheries when it comes to the species spectrum in the catch (Table 5.7 and 5.8), even though it is much more species-rich then sometimes assumed, also within the "snapper" category, which forms the main target group. There is a relatively small amount of by-catch in the deep demersal hook and line fisheries, consisting of numerous species which are not all preferred by the processors who are buying the snappers, groupers and emperors. Other deep demersal gear types like traps and gillnets are not very common in WPP 573 but will also include various by-catch species. By-catch species are usually sun-dried by the crew and sold separately, outside of the catch of snappers, groupers and emperors, which belongs to the owner of the boat and goes to the processors for middle and higher end local and export markets.

Drop line fisheries are characterized by a very low impact on habitat at the fishing grounds, whereas some more impact from entanglement can be expected from bottom long lines. Nowhere near the habitat impact from destructive dragging gears is evident from either one of the two deep hook and line fisheries. However, due to limited available habitat (fishing grounds) and predictable locations of fish concentrations, combined with a very high fishing effort on the best known fishing grounds, as well as the targeting of juveniles, there is a high potential for overfishing in the deep slope hook and line fisheries.

Risk of overfishing is high for most of the target snapper and groupers species in the deep demersal fisheries in WPP 573 (Table 4.1 and Table 4.2), and SPR is dangerously low (Table 5.1) especially for those species which are easily caught with drop line, bottom long line and other gears. The snapper feeding aggregations are at predictable and well known locations and the snappers are therefore among the most vulnerable species in these fisheries. Fishing mortality among all major target snapper species seems to be unacceptably high while the catches of these species include large percentages of relatively small and even immature specimen. For several species of snappers, sizes are consistently targeted and landed well below the size where these fish reach maturity and many species are harvested well below the optimum size. Bigger specimen of the largest snapper species are already becoming extremely rare in our region.

Most of the top 10 snapper species (except Lutjanus erythropterus) in the deep demersal fisheries in WPP 573 are considered at high risk of overfishing, based on length based indicators. This pattern is consistent over a range of indicators used in our assessment. Fishing effort and fishing mortality in this fisheries management areas have been too high in recent years and probably for decades already. Time trends for size based indicators (Table 4.3), however, show improvement for many of the target species in WPP 573, notably also across most indicators for the highly important *Pristipomoides multidens* and *Pristipomoides typus* catches in this WPP.

Stocks of *Pristipomoides multidens*, *Pristipomoides typus* and many other species are showing improvement across all length based parameters when combining data from all gear types in WPP 573. Trends in length based indicators can also be compared with trends in CpUE by gear types and boat size category (Tables 5.2 to 5.6), and especially for P. multidens the trends in CpUE seem to confirm the trends observed in size based indicators. While various factors may have contributed to the gradual improvement in status of many of the stocks in WPP 573, it should be noted that the fisheries here concentrates in the Timor Sea, closely along the boundary which separates Indonesian

from Australian fishing grounds. Fishing effort in Australian waters has been drastically limited in recent years, and stock recovery on Northern Australian fishing grounds may well be "spilling over" to the Indonesian side.

Overall we are currently looking mainly at a high risk of overfishing for all major snapper species, combined with a trend of improvement in these snapper stocks in WPP 573. The groupers seem to be somewhat less vulnerable to the deep demersal fisheries than the snappers. This may be because most groupers are staying closer to high rugosity bottom habitat, which is avoided by trap and long line vessels due to risk of entanglement, while drop line fishers are targeting schooling snappers that are hovering higher in the water column, above the grouper habitat.

Fishing mortality (from deep demersal fisheries) in large mature groupers may be somewhat lower than what we see for the snappers. Groupers generally mature as females at a size relative to their maximum size which is lower than for snappers. This strategy enables them to reproduce before they are being caught, although fecundity is still relatively low at sizes below the optimum length. Fecundity for the population as a whole peaks at the optimum size for each species, and this is also the size around which sex change from females to males happens in groupers.

For those grouper species which spend all or most of their life cycle in deep water habitats, the relatively low vulnerability to the deep slope hook and line fisheries is very good news. For other grouper species which spend major parts of their life cycle in shallower habitats, like coral reefs or mangroves or estuaries for example, the reality is that their populations in general are not in good shape due to excessive fishing pressure by small scale fisheries in those shallower habitats. This situation is also evident for a few snapper species such as for example the mangrove jack.

Overall there is a clear scope for some straightforward fisheries improvements supported by relatively uncomplicated fisheries management policies and regulations. Our first recommendation for industry-led fisheries improvements is for traders to adjust trading limits (incentives to fishers) species by species to the length at maturity for each species. For a number of important species the trade limits need adjustments upwards, with government support through regulations on minimum allowable sizes. Many of the target species in the deep demersal fisheries are traded at sizes that are too small, and this impairs sustainability. The impact is clearly visible already in landed catches.

Adjustment upwards of trading limits towards the size at first maturity would be a straightforward improvement in these fisheries. By refusing undersized fish in high value supply lines, the market can provide incentives for captains of fishing boats to target larger specimen. The captains can certainly do this by using their day to day experiences, selecting locations, fishing depths, habitat types, hook sizes, etc. Literature shows that habitat separation between size groups is evident for many species, while size selectivity of specific hook sizes is obvious. Captains know about this from experience.

Besides size selectivity, fishing effort is a very important factor in resulting overall catch and size frequency of the catch. All major target species show a rapid decline in numbers above the size where the species becomes most vulnerable to the fisheries. This rapid decline in numbers, as visible in the LFD graphs, indicates a high fishing mortality for the vulnerable size classes. Fishing effort is probably too high to be sustainable and many species seem to be at risk in the deep demersal fisheries, judging from a number of indicators as presented in this report.

One urgently needed fisheries management intervention is to cap fishing effort (number of boats) at current level and to start looking at incentives for effort reductions. A reduction of effort will need to be supported and implemented by government to ensure an even playing field among fishing companies. An improved licensing system and an effort control system based on the Indonesia's mandatory Vessel Monitoring System, using more accurate data on Gross Tonnage for all fishing boats, could be used to better manage fishing effort. Continuous monitoring of trends in the various presented indicators will show in which direction these fisheries are heading and what the effects are of any fisheries management measures in future years.

Government policies and regulations are needed and can be formulated to support fishers and traders with the implementation of improvements across the sector. Our recommendations for supporting government policies in relation to the deep demersal fisheries include:

- Use scientific (Latin) fish names in fisheries management and in trade.
- Incorporate length-based assessments in management of specific fisheries.
- Develop species-specific length based regulations for these fisheries.
- Implement a controlled access management system for regulation of fishing effort on specific fishing grounds.
- Increase public awareness on unknown species and preferred size classes by species.
- Incorporate traceability systems in fleet management by fisheries and by fishing ground.

Recommendations for specific regulations may include:

- Make mandatory correct display of scientific name (correct labeling) of all traded fish (besides market name).
- Adopt legal minimum sizes for specific or even all traded species, at the length at maturity for each species.
- Make mandatory for each fishing vessel of all sizes to carry a simple GPS tracking device that needs to be functioning at all times. Indonesia already has a mandatory Vessel Monitoring System for vessels larger than 30 GT, so Indonesia could consider expanding this requirement to fishing vessels of smaller sizes.
- Cap fishing effort in the snapper fisheries at the current level and explore options to reduce effort to more sustainable levels.

Table 5.1: SPR values over the period 2016 to 2024 for the top 20 most abundant species in CODRS samples in WPP 573, based on total catch LFD analysis, for all gear types combined and adjusted for relative effort by gear type.

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	Pristipomoides multidens	11	16	13	15	11	NA	NA	NA	NA
2	Pristipomoides typus	13	13	14	13	9	NA	NA	NA	NA
3	Lutjanus malabaricus	5	4	8	7	6	NA	NA	NA	NA
4	Epinephelus areolatus	24	21	19	16	16	NA	NA	NA	NA
5	Lutjanus erythropterus	43	100	43	52	64	NA	NA	NA	NA
6	Pristipomoides sieboldii	11	14	14	18	17	NA	NA	NA	NA
7	Pristipomoides filamentosus	12	3	4	8	4	NA	NA	NA	NA
8	Lutjanus timorensis	30	16	15	10	12	NA	NA	NA	NA
9	Parascolopsis eriomma	NA	NA	47	100	100	NA	NA	NA	NA
10	Lutjanus sebae	4	4	4	3	5	NA	NA	NA	NA
11	Etelis coruscans	2	1	4	10	2	NA	NA	NA	NA
12	Paracaesio kusakarii	5	20	7	100	39	NA	NA	NA	NA
13	Lutjanus vitta	34	30	24	16	14	NA	NA	NA	NA
14	Aphareus rutilans	10	11	20	19	26	NA	NA	NA	NA
15	Etelis boweni	2	4	7	4	7	NA	NA	NA	NA
16	Etelis radiosus	NA	NA	16	13	8	NA	NA	NA	NA
17	Gymnocranius grandoculis	12	12	16	22	19	NA	NA	NA	NA
18	Pinjalo lewisi	13	18	100	19	100	NA	NA	NA	NA
19	Lutjanus boutton	NA	NA	100	45	100	NA	NA	NA	NA
20	Cephalopholis sonnerati	NA	14	16	11	14	NA	NA	NA	NA

Table 5.2: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides multidens in WPP 573

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	8.2	1.1	0.4	0.2	NA	NA	NA	NA
Nano Longline	3.3	8.2	5.9	0.4	0.1	NA	NA	NA	NA
Small Dropline	8.1	11.3	14.8	12.4	9.4	NA	NA	NA	NA
Small Longline	3.3	8.2	5.9	4.3	4.3	NA	NA	NA	NA
Medium Dropline	4.5	4.0	4.5	5.9	10.6	NA	NA	NA	NA
Medium Longline	5.4	6.3	8.9	6.1	8.8	NA	NA	NA	NA
Large Dropline	NA								
Large Longline	NA								

Table 5.3: CpUE (kg/GT/day) trends by fleet segment for Lutjanus malabaricus in WPP 573

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	2.6	0.5	0.1	0.1	NA	NA	NA	NA
Nano Longline	0.7	2.6	1.7	0.1	0.1	NA	NA	NA	NA
Small Dropline	1.8	3.9	3.6	3.5	4.4	NA	NA	NA	NA
Small Longline	0.7	2.6	1.7	1.4	1.9	NA	NA	NA	NA
Medium Dropline	0.9	1.3	1.2	2.1	3.7	NA	NA	NA	NA
Medium Longline	1.0	1.0	3.6	3.0	4.3	NA	NA	NA	NA
Large Dropline	NA								
Large Longline	NA								

Table 5.4: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides typus in WPP 573

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	2.7	0.5	0.0	0.0	NA	NA	NA	NA
Nano Longline	1.0	2.7	1.7	0.0	0.0	NA	NA	NA	NA
Small Dropline	2.5	3.8	3.7	2.9	4.4	NA	NA	NA	NA
Small Longline	1.0	2.7	1.7	1.2	1.4	NA	NA	NA	NA
Medium Dropline	1.0	2.0	2.3	2.7	2.5	NA	NA	NA	NA
Medium Longline	1.7	0.6	1.6	1.3	0.6	NA	NA	NA	NA
Large Dropline	NA								
Large Longline	NA								

Table 5.5: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides sieboldii in WPP 573

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	NA	0.1	1.2	0.6	2.2	NA	NA	NA	NA
Nano Longline	0.0	0.1	0.6	NA	0.0	NA	NA	NA	NA
Small Dropline	NA	0.1	0.0	0.0	0.0	NA	NA	NA	NA
Small Longline	0.0	0.1	0.6	0.3	0.9	NA	NA	NA	NA
Medium Dropline	0.1	0.1	0.0	0.0	0.0	NA	NA	NA	NA
Medium Longline	0.1	NA							
Large Dropline	NA								
Large Longline	NA								

Table 5.6: CpUE (kg/GT/day) trends by fleet segment for all species in WPP 573

$_{\mathrm{CpUE}}$	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	19.4	18.4	17.6	20.8	14.1	NA	NA	NA	NA
Nano Longline	16.5	18.4	19.2	6.7	5.3	NA	NA	NA	NA
Small Dropline	16.5	26.3	27.9	23.9	24.3	NA	NA	NA	NA
Small Longline	16.5	18.4	19.2	17.8	16.1	NA	NA	NA	NA
Medium Dropline	10.4	10.0	11.6	12.5	20.0	NA	NA	NA	NA
Medium Longline	10.2	8.7	15.8	11.2	14.4	NA	NA	NA	NA
Large Dropline	NA								
Large Longline	NA								

Table 5.7: Sample sizes over the period 2016 to 2024 for the others species in WPP 573 Dropline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Sample
Acanthuridae	0	0	6	68	193	0	0	0	0	267	0.035
Ariidae	0	15	11	2	173	0	0	0	0	201	0.026
Ariommatidae	0	0	0	23	16	0	0	0	0	39	0.005
Balistidae	0	0	71	169	697	0	0	0	0	937	0.123
Bramidae	4	0	0	0	3	0	0	0	0	7	0.001
Caesionidae	0	0	0	2	28	0	0	0	0	30	0.004
Carangidae	38	97	154	708	1060	0	0	0	0	2057	0.269
Chaetodontidae	0	0	0	1	0	0	0	0	0	1	0.000
Coryphaenidae	0	0	2	14	27	0	0	0	0	43	0.006
Dasyatidae	0	0	0	1	0	0	0	0	0	1	0.000
Ephippidae	0	0	2	0	7	0	0	0	0	9	0.001
Epinephelidae	6	23	365	465	1469	0	0	0	0	2328	0.304
Gempylidae	0	0	45	76	21	0	0	0	0	142	0.019
Glaucosomatidae	0	0	0	1	0	0	0	0	0	1	0.000
Haemulidae	1	0	2	494	371	0	0	0	0	868	0.114
Holocentridae	4	8	65	61	197	0	0	0	0	335	0.044
Istiophoridae	0	0	0	2	1	0	0	0	0	3	0.000
Labridae	0	0	12	38	177	0	0	0	0	227	0.030
Lethrinidae	60	4	52	226	1243	0	0	0	0	1585	0.207
Loliginidae	0	0	0	1	1	0	0	0	0	2	0.000
Lutjanidae	38	21	90	1787	3275	0	0	0	0	5211	0.682
Malacanthidae	1	2	10	1	1	0	0	0	0	15	0.002
Monacanthidae	0	0	3	0	0	0	0	0	0	3	0.000
Mugilidae	0	0	0	6	0	0	0	0	0	6	0.001
Mullidae	0	0	16	21	349	0	0	0	0	386	0.050
Muraenesocidae	0	0	0	5	4	0	0	0	0	9	0.001
Nemipteridae	2	11	45	1043	2369	0	0	0	0	3470	0.454
Other	183	301	474	338	366	0	0	0	0	1662	0.217
Priacanthidae	0	17	119	370	473	0	0	0	0	979	0.128
Psettodidae	0	0	0	0	0	0	0	0	0	0	0.000
Rachycentridae	0	0	3	5	2	0	0	0	0	10	0.001
Rays	0	0	0	3	19	0	0	0	0	22	0.003
Scaridae	0	0	5	1	6	0	0	0	0	12	0.002
Sciaenidae	0	0	4	260	471	0	0	0	0	735	0.096
Scombridae	24	5	104	147	404	0	0	0	0	684	0.089
Scorpaenidae	0	0	0	11	107	0	0	0	0	118	0.015
Serranidae	55	10	29	9	73	0	0	0	0	176	0.023
Sharks	0	4	120	49	187	0	0	0	0	360	0.047
Siganidae	0	0	0	1	0	0	0	0	0	1	0.000
Sparidae	0	0	0	0	0	0	0	0	0	0	0.000
Sphyraenidae	1	2	1	5	13	0	0	0	0	22	0.003
Tetraodontidae	0	0	0	0	2	0	0	0	0	2	0.000
Total	417	520	1810	6414	13805	0	0	0	0	22966	3.004

Table 5.8: Sample sizes over the period 2016 to 2024 for the others species in WPP 573 Longline

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Sample
Acanthuridae	0	0	0	0	20	0	0	0	0	20	0.003
Ariidae	0	0	0	71	0	0	0	0	0	71	0.009
Ariommatidae	0	0	0	4	0	0	0	0	0	4	0.001
Balistidae	0	0	0	0	33	0	0	0	0	33	0.004
Bramidae	0	0	0	0	0	0	0	0	0	0	0.000
Caesionidae	0	0	0	0	0	0	0	0	0	0	0.000
Carangidae	2	1	11	43	91	0	0	0	0	148	0.019
Chaetodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Coryphaenidae	0	0	0	0	1	0	0	0	0	1	0.000
Dasyatidae	0	0	0	0	0	0	0	0	0	0	0.000
Ephippidae	0	0	0	0	0	0	0	0	0	0	0.000
Epinephelidae	1	0	0	18	28	0	0	0	0	47	0.006
Gempylidae	0	0	0	5	0	0	0	0	0	5	0.001
Glaucosomatidae	0	0	0	0	0	0	0	0	0	0	0.000
Haemulidae	0	0	1	9	14	0	0	0	0	24	0.003
Holocentridae	3	0	0	12	10	0	0	0	0	25	0.003
Istiophoridae	0	0	0	0	0	0	0	0	0	0	0.000
Labridae	0	0	0	2	3	0	0	0	0	5	0.001
Lethrinidae	0	0	0	20	18	0	0	0	0	38	0.005
Loliginidae	0	0	0	0	0	0	0	0	0	0	0.000
Lutjanidae	0	0	6	95	98	0	0	0	0	199	0.026
Malacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Monacanthidae	0	0	0	0	0	0	0	0	0	0	0.000
Mugilidae	0	0	0	0	0	0	0	0	0	0	0.000
Mullidae	0	0	0	0	6	0	0	0	0	6	0.001
Muraenesocidae	0	0	0	3	11	0	0	0	0	14	0.002
Nemipteridae	1	0	1	126	56	0	0	0	0	184	0.024
Other	26	1	2	14	33	0	0	0	0	76	0.010
Priacanthidae	1	0	0	41	5	0	0	0	0	47	0.006
Psettodidae	0	0	0	0	0	0	0	0	0	0	0.000
Rachycentridae	0	0	0	0	0	0	0	0	0	0	0.000
Rays	0	0	0	5	12	0	0	0	0	17	0.002
Scaridae	0	0	1	0	3	0	0	0	0	4	0.001
Sciaenidae	0	0	0	48	9	0	0	0	0	57	0.007
Scombridae	1	0	1	2	13	0	0	0	0	17	0.002
Scorpaenidae	0	0	0	0	1	0	0	0	0	1	0.000
Serranidae	0	0	0	1	0	0	0	0	0	1	0.000
Sharks	0	0	0	28	110	0	0	0	0	138	0.018
Siganidae	0	0	0	0	0	0	0	0	0	0	0.000
Sparidae	0	0	0	43	0	0	0	0	0	43	0.006
Sphyraenidae	0	0	0	0	0	0	0	0	0	0	0.000
Tetraodontidae	0	0	0	0	0	0	0	0	0	0	0.000
Total	35	2	23	590	575	0	0	0	0	1225	0.160

6 References

Australian Surveying & Land Information Group (AUSLIG), 1996. Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Ehrhardt, N.M. and Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. Trans. Am. Fish. Soc. 121:115-122.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5: 86-91.

Froese, R. and Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 56:758-773.

Froese, R. and D. Pauly, (eds.) 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 p.

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R. and Pauly, D. 2016. Minimizing the impact of fishing. Fish and Fisheries DOI: 10.1111/faf.12146.

Fujita, R., Karr, K., Apel, A. and Mateo, I. 2012. Guide to the use of Froese sustainability indicators to assess and manage data-limited fish stocks. Oceans Program, Environmental Defense Fund, Research and Development Team.

Gislason, H., Daan, N., Rice, J.C. and J.G. Pope, 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11: 149 Ü158.

Martinez-Andrade F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: lutjanidae). Dissertation http://etd.lsu.edu/docs/available/etd-1113103-230518/unrestricted/Martinez-Andrade dis.pdf

Meester G.A., Ault J.S., Smith S.G., Mehrotra A. 2001. An integrated simulation modeling and operations research approach to spatial management decision making. Sarsia 86:543-558.

Prescott, V., 2000. East Timor's Potential Maritime Boundaries. East Timor and its Maritime Dimensions: Legal and Policy Implications for Australia, Australian Institute of International Affairs, Canberra.

Quinn, T.J. and Deriso R.B. 1999. Quantitative Fish Dynamics. New York: Oxford University Press.

Vasilakopoulos, P., O'Neill, F. G. and Marshall, C. T. 2011. Misspent youth: does catching immature fish affect fisheries sustainability? - ICES Journal of Marine Science, 68: 1525-1534.

Wallace, R.K. and Fletcher, K.M. 2001. Understanding Fisheries Management: A Manual for understanding the Federal Fisheries Management Process, Including Analysis of the 1996 Sustainable Fisheries Act. Second Edition. Auburn University and the University of Mississippi. 62 pp.

Zhang, C.I., Kim, S., Gunderson, D., Marasco, R., Lee, J.B., Park, H.W. and Lee, J.H. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fisheries Research 100: 26-41.